
CDD and CMOS Cameras

DCU223x, DCU224x
DCC1240x
DCC1545M, DCC1645C
DCC3240X

Operation Manual and SDK

2013

Version:
Date:

4.20
25.03.2013

Copyright © 2013 Thorlabs GmbH

Foreword

Contents
10

1 General Information 11

111.1 Safety

121.2 Ordering Codes and Accessories

121.3 Requirements

141.4 DCx Camera Family

151.5 Contents

161.6 What's New in this Version?

2 Camera Basics 17

172.1 Operating Modes

172.1.1 Freerun Mode

192.1.2 Trigger Mode

202.1.3 Standby

212.2 Image Display Modes

232.3 Sensor

232.3.1 Sensor Sizes

242.3.2 Micro Lenses

262.3.3 Color Filter (Bayer filter)

282.3.4 Hot Pixels

302.3.5 Shutter Methods

332.3.6 Line Scan Mode

342.4 Reading Out Partial Images

342.4.1 Area of Interest (AOI)

372.4.2 Subsampling

382.4.3 Binning

392.5 Digitizing Images

392.5.1 Characteristics and LUT

412.5.2 Bit Depth and Digital Contrast Adjustment

442.6 Camera Parameters

442.6.1 Pixel Clock, Frame Rate, Exposure Time

442.6.2 Gain and Offset

452.6.3 Automatic Image Control

462.6.4 Applying New Parameters

462.7 Firmware and Camera Start

472.8 Digital Inputs / Outputs

472.8.1 Using Digital Inputs/Outputs

472.8.2 Flash Timing (Trigger Mode)

492.8.3 Flash Timing (Freerun Mode)

502.8.4 Serial Interface RS-232 (DC3240x only)

512.9 USB Interface

512.9.1 History and Development

512.9.2 Structure and Topology

522.9.3 USB 2.0 Cabling and Connectors

522.9.4 USB 3.0 Cabling and Connectors

532.9.5 Data Transmission and Bandwidth

3 Operation 54

543.1 uc480 Quick Start

563.2 Installation and Connection

563.2.1 System Requirements

583.2.2 DCx Driver Compatibility

583.2.3 Installing the uc480 Software under Windows

613.2.4 Installing the uc480 Software under Linux

613.2.5 Connecting a DCx Camera

633.3 Application Notes by Camera Model

633.3.1 DCC1240x / DCC3240x Application Notes

663.3.2 DCC1545M Application Notes

663.3.3 DCC1645C Application Notes

663.3.4 DCU223x Application Notes

663.3.5 DCU224x Application Notes

673.4 Installed uc480 Programs

673.4.1 uc480 Camera Manager

683.4.1.1 Camera List

683.4.1.2 Control Center

703.4.1.3 General Information

713.4.1.4 Camera Information

713.4.1.5 Creating a Support File

713.4.1.6 Additional Functions

743.4.1.7 Parameters

753.4.2 uc480 Viewer

763.4.2.1 Start Dialog

773.4.2.2 Toolbars

793.4.2.3 Status Bar

793.4.2.4 Opening a Camera

803.4.2.5 Menus

843.4.2.6 Dialog Boxes

923.4.2.7 Properties

1173.4.2.8 Creating profiles

1193.4.3 uc480 Player

1193.4.3.1 Loading an AVI file

1203.4.3.2 Overview of the Operation Controls

1223.4.3.3 Loop Mode

1223.4.3.4 Video Window and Full Screen Mode

1233.4.4 uc480 Hotpixel Editor

4 Programming (SDK) 126

1274.1 First Steps to uc480 Programming

1294.2 How to Proceed

1294.2.1 Preparing Image Capture

1294.2.1.1 Querying Information

1304.2.1.2 Opening and Closing the Camera

1304.2.1.3 Allocating Image Memory

1324.2.1.4 Image Memory Sequences

1334.2.2 Selecting the Display Mode

1344.2.3 Capturing Images

1344.2.3.1 Image Capture Modes

1414.2.3.2 Event / Message Handling

1444.2.4 Setting Camera Parameters

1444.2.4.1 Setting and Getting Parameters

1474.2.4.2 Automatic Image Control

1484.2.4.3 Image Pre-processing

1484.2.4.4 Get Camera Status

1484.2.4.5 Using the Camera EEPROM

1494.2.5 Saving Images and Videos

1494.2.5.1 Saving and Loading Single Frames

1494.2.5.2 Capturing AVIs

1524.2.6 Using Inputs and Outputs

1524.2.6.1 Input/Output Control

1554.3 Function Descriptions

1564.3.1 is_AddToSequence

1574.3.2 is_AllocImageMem

1594.3.3 is_AOI

1674.3.4 is_AutoParameter

1704.3.5 is_Blacklevel

1724.3.6 is_CameraStatus

1744.3.7 is_CaptureStatus

1774.3.8 is_CaptureVideo

1794.3.9 is_ClearSequence

1804.3.10 is_ColorTemperature

1834.3.11 is_Configuration

1884.3.12 is_Convert

1904.3.13 is_CopyImageMem

1914.3.14 is_CopyImageMemLines

1924.3.15 is_DeviceFeature

1964.3.16 is_DeviceInfo

1984.3.17 is_DirectRenderer

2054.3.18 is_DisableEvent

2064.3.19 is_EdgeEnhancement

2084.3.20 is_EnableAutoExit

2094.3.21 is_EnableEvent

2114.3.22 is_EnableMessage

2134.3.23 is_ExitCamera

2144.3.24 is_ExitEvent

2154.3.25 is_ExitImageQueue

2164.3.26 is_Exposure

2214.3.27 is_ForceTrigger

2224.3.28 is_FreeImageMem

2234.3.29 is_FreezeVideo

2254.3.30 is_GetActiveImageMem

2264.3.31 is_GetActSeqBuf

2274.3.32 is_GetAutoInfo

2304.3.33 is_GetBusSpeed

2314.3.34 is_GetCameraInfo

2334.3.35 is_GetCameraList

2354.3.36 is_GetCameraLUT

2364.3.37 is_GetColorConverter

2374.3.38 is_GetColorDepth

2384.3.39 is_GetDLLVersion

2394.3.40 is_GetError

2404.3.41 is_GetFramesPerSecond

2414.3.42 is_GetFrameTimeRange

2424.3.43 is_GetImageHistogram

2444.3.44 is_GetImageInfo

2474.3.45 is_GetImageMem

2484.3.46 is_GetImageMemPitch

2494.3.47 is_GetNumberOfCameras

2504.3.48 is_GetOsVersion

2514.3.49 is_GetSensorInfo

2524.3.50 is_GetSensorScalerInfo

2534.3.51 is_GetSupportedTestImages

2554.3.52 is_GetTestImageValueRange

2564.3.53 is_GetTimeout

2574.3.54 is_GetUsedBandwidth

2584.3.55 is_GetVsyncCount

2594.3.56 is_HasVideoStarted

2604.3.57 is_HotPixel

2644.3.58 is_ImageFile

2674.3.59 is_ImageFormat

2734.3.60 is_InitCamera

2764.3.61 is_InitEvent

2784.3.62 is_InitImageQueue

2794.3.63 is_InquireImageMem

2804.3.64 is_IO

2884.3.65 is_IsVideoFinish

2894.3.66 is_LockSeqBuf

2904.3.67 is_Measure

2924.3.68 is_ParameterSet

2944.3.69 is_PixelClock

2964.3.70 is_ReadEEPROM

2974.3.71 is_RenderBitmap

2994.3.72 is_ResetToDefault

3014.3.73 is_SetAllocatedImageMem

3034.3.74 is_SetAutoParameter

3104.3.75 is_SetBinning

3134.3.76 is_SetCameraID

3154.3.77 is_SetColorConverter

3174.3.78 is_SetColorCorrection

3194.3.79 is_SetColorMode

3224.3.80 is_SetDisplayMode

3254.3.81 is_SetDisplayPos

3264.3.82 is_SetErrorReport

3274.3.83 is_SetExternalTrigger

3294.3.84 is_SetFrameRate

3314.3.85 is_SetGainBoost

3324.3.86 is_SetGamma

3334.3.87 is_SetHardwareGain

3354.3.88 is_SetHWGainFactor

3374.3.89 is_SetImageMem

3384.3.90 is_SetOptimalCameraTiming

3404.3.91 is_SetRopEffect

3424.3.92 is_SetSaturation

3434.3.93 is_SetSensorScaler

3454.3.94 is_SetSensorTestImage

3474.3.95 is_SetSubSampling

3504.3.96 is_SetTimeout

3514.3.97 is_SetTriggerCounter

3524.3.98 is_SetTriggerDelay

3534.3.99 is_StopLiveVideo

3544.3.100 is_UnlockSeqBuf

3554.3.101 is_WaitEvent

3564.3.102 is_WaitForNextImage

3584.3.103 is_WriteEEPROM

3594.4 AVI Function Descriptions

3594.4.1 isavi_AddFrame

3604.4.2 isavi_CloseAVI

3604.4.3 isavi_DisableEvent

3614.4.4 isavi_EnableEvent

3624.4.5 isavi_ExitAVI

3634.4.6 isavi_ExitEvent

3644.4.7 isavi_GetAVIFileName

3654.4.8 isavi_GetAVIFileNameW

3664.4.9 isavi_GetAVISize

3674.4.10 isavi_GetnCompressedFrames

3684.4.11 isavi_GetnLostFrames

3694.4.12 isavi_InitAVI

3704.4.13 isavi_InitEvent

3714.4.14 isavi_OpenAVI

3724.4.15 isavi_OpenAVIW

3734.4.16 isavi_ResetFrameCounters

3744.4.17 isavi_SetFrameRate

3754.4.18 isavi_SetImageQuality

3764.4.19 isavi_SetImageSize

3774.4.20 isavi_StartAVI

3784.4.21 isavi_StopAVI

3794.5 Obsolete Functions

3824.5.1 is_ConvertImage

3834.5.2 is_DisableDDOverlay

3844.5.3 is_EnableDDOverlay

3854.5.4 is_GetCameraType

3864.5.5 is_GetCaptureErrorInfo

3884.5.6 is_GetDC

3894.5.7 is_GetDDOvlSurface

3904.5.8 is_GetExposureRange

3914.5.9 is_GetGlobalFlashDelays

3924.5.10 is_GetPixelClockRange

3934.5.11 is_HideDDOverlay

3944.5.12 is_LoadBadPixelCorrectionTable

3954.5.13 is_LoadImage

3964.5.14 is_LoadImageMem

3984.5.15 is_LoadParameters

4004.5.16 is_LockDDMem

4014.5.17 is_LockDDOverlayMem

4024.5.18 is_PrepareStealVideo

4034.5.19 is_ReleaseDC

4044.5.20 is_ResetCaptureErrorInfo

4054.5.21 is_SaveBadPixelCorrectionTable

4064.5.22 is_SaveImage

4074.5.23 is_SaveImageEx

4094.5.24 is_SaveImageMem

4104.5.25 is_SaveImageMemEx

4124.5.26 is_SaveParameters

4144.5.27 is_SetAOI

4174.5.28 is_SetBadPixelCorrection

4184.5.29 is_SetBadPixelCorrectionTable

4204.5.30 is_SetBayerConversion

4214.5.31 is_SetBlCompensation

4234.5.32 is_SetConvertParam

4254.5.33 is_SetDDUpdateTime

4264.5.34 is_SetEdgeEnhancement

4274.5.35 is_SetExposureTime

4294.5.36 is_SetFlashDelay

4314.5.37 is_SetFlashStrobe

4334.5.38 is_SetHwnd

4344.5.39 is_SetImageAOI

4354.5.40 is_SetImagePos

4384.5.41 is_SetImageSize

4404.5.42 is_SetIO

4414.5.43 is_SetIOMask

4424.5.44 is_SetKeyColor

4434.5.45 is_SetLED

4444.5.46 is_SetPixelClock

4464.5.47 is_ShowDDOverlay

4474.5.48 is_StealVideo

4484.5.49 is_UnlockDDMem

4494.5.50 is_UnlockDDOverlayMem

4504.5.51 is_UpdateDisplay

4514.6 Programming Notes

4514.6.1 Programming in C/C++

4524.6.2 Programming in C#

4524.6.3 Programming in VB.NET

4524.6.4 Programming in Delphi

4534.6.5 Programming with ActiveX

4534.6.6 Thread Programming

4544.7 Lists

4544.7.1 Complete List of All Return Values

4574.7.2 Error Codes of AVI Functions

4574.7.3 Linux: Not Supported Functions

5 Specifications 458

4595.1 Model Comparison

4605.2 Model Naming Conventions

4605.3 Camera and Sensor Data

4615.3.1 DCC1240x / DCC3240x

4645.3.2 DCC1545M

4665.3.3 DCC1645C

4685.3.4 DCU223x

4705.3.5 DCU224x

4725.4 Mechanical Specifications

4735.4.1 DCU223x, DCU224x

4745.4.2 DCC1240x

4755.4.3 DCC3240x

4765.4.4 DCC1545M, DCC1645C

4775.4.5 Flange Back Distance

4775.4.5.1 Calculating the Flange Back Distance

4785.4.5.2 Maximum Immersion Depth for Lenses

4805.4.6 Position Accuracy of the Sensor

4805.4.7 Filter Glasses

4805.4.7.1 Filter Types

4845.4.7.2 Mounting the Filter

4855.4.7.3 Cleaning the Filter Glasses

4865.4.8 Ambient Conditions

4875.5 Camera Interface

4875.5.1 DCU223x, DCU224x, DCC1240x

4875.5.1.1 I/O Connector - Pin Assignment

4885.5.1.2 Digital Input (Trigger) Circuit

4895.5.1.3 Digital Output (Flash) Circuit

4915.5.2 DCC3240x

4915.5.2.1 I/O Connector Pin Assignment

4925.5.2.2 GPIO Interface

4935.5.2.3 Digital Input (Trigger) Circuit

4945.5.2.4 Digital Output (Flash) Circuit

4955.5.2.5 RS-232 Serial Interface

4965.5.3 Camera EEPROM Specification

4975.6 Accessories for DCx cameras

4975.6.1 Accessories for DCU22xX / DCC1240X

4985.6.2 Accessories for DCC1x45X

4985.6.3 Accessories for DCC3240x

6 Appendix 499

4996.1 Troubleshooting/FAQ

5006.1.1 PCs with Energy Saving CPU Technology

5016.2 Status LED on USB DCx Cameras

5026.3 Color and Memory Formats

5046.4 uc480 Parameter File (ini file)

5096.5 Definition of IP Protection Classes

5096.6 History of uc480 Software Versions

5166.7 History of uc480 API Functions

5186.8 Thorlabs Worldwide Contacts

5196.9 Certifications and Compliances

5206.10 Thorlabs 'End of Life' Policy (WEEE)

5216.11 Warranty

5226.12 Exclusion of Liability and Copyright

© 2013 Thorlabs GmbH

We aim to develop and produce the best solution for your application
in the field of optical measurement technique. To help us to live up to
your expectations and improve our products permanently we need
your ideas and suggestions. Therefore, please let us know about
possible criticism or ideas. We and our international partners are
looking forward to hearing from you.

Thorlabs GmbH

 Warning

Sections marked by this symbol explain dangers that might result in
personal injury or death. Always read the associated information
carefully, before performing the indicated procedure.

Please read these advices carefully!

This manual also contains "NOTES" and "HINTS" written in this form.

 Attention

Paragraphs preceeded by this symbol explain hazards that could
damage the instrument and the connected equipment or may cause
loss of data.

 Note

10

© 2013 Thorlabs GmbH

1 General Information

11

1 General Information
Thank you for purchasing a DCx camera!

You should first read the following chapters to get a quick overview on what is new in this software version and on
getting started with your new camera.

Getting started

DCx quick-start

First steps to DCx Camera programming

The uc480 Viewer application

Further important information

What is new in this version?

Contents of this Manual

The DCx camera family

Specifications

Enjoy your new DCx camera!

1.1 Safety

 Attention

All statements regarding safety of operation and technical data in this instruction manual will only apply when the
unit is operated correctly as it was designed for.

All modules must only be operated with proper shielded connection cables.

Only with written consent from Thorlabs may changes to single components be carried out or components not
supplied by Thorlabs be used.

This precision device is only serviceable if properly packed into the complete original packaging including the
plastic foam sleeves. If necessary, ask for a replacement package.

54

127

75

16

15

14

458

© 2013 Thorlabs GmbH12

DCx Cameras

1.2 Ordering Codes and Accessories

DCU223M CCD camera, monochrome, 1024x768 pixel, C mount

DCU223C CCD camera, color, 1280x1024 pixel, C mount

DCU224M CCD camera, monochrome, 1280x1024 pixel, C mount

DCU224C CCD camera, color, 1280x1024 pixel, C mount

DCC1545M CMOS camera, monochrome, 1280x1024 pixel, CS mount

DCC1645C CMOS camera, color, 1280x1024 pixel, CS mount

DCC1240M CMOS camera, monochrome, 1280x1024 pixel, C mount

DCC1240C CMOS camera, color, 1280x1024 pixel, C mount

CAB-DCU-T1 Trigger cable for DCU22xX and DCC1240X cameras (Trigger In/Out)

CAB-DCU-T2 Trigger cable for DCU22xX and DCC1240X cameras (Trigger In only)

CAB-DCU-T3 I/O cable for DC3240 CMOS USB 3.0 cameras

Thorlabs C Mount Camera Lenses (objectives): See Thorlabs' website

1.3 Requirements
For operating the DCx cameras, the following system requirements must be met:

Minimum*1 Recommended

CPU speed 600 MHz 2 x 2.4 GHz

Memory (RAM) 256 MB 2048 MByte

USB host controller USB 2.0 high speed (480 Mbps)

USB 3.0 (4000 Mbps) for DC3240x
cameras

USB 2.0 high speed (480 Mbps)

USB 3.0 (4000 Mbps) for DC3240x cameras

Intel® or NVIDIA® nForce mainboard chipset

Graphics card Onboard graphics chip AGP/PCIe graphics card

Latest version of Microsoft DirectX Runtime
9.0c

Operating system Windows 7 32 or 64 bit

Windows XP 32 bit (Service Pack 2)

Linux (Kernel 2.6)

Windows 7 32 or 64 bit

Windows Vista 32 or 64 bit (Service Pack 1)
*3

Windows XP 32 bit (Service Pack 3)

Linux (Kernel 2.6)

*1 With the minimum system requirements the camera performance may be limited.

*3 DCC3240x USB 3.0 cameras are not supported under Windows Vista.

USB interface

Onboard USB 2.0 ports usually provide significantly better performance than PCI and PCMCIA USB adapters.

Current generation CPUs with energy saving technologies can cause bandwidth problems on the USB bus. See
section PCs with energy saving CPU technology for hints and possible solutions.

Large multi camera systems

Connecting a large number of cameras to a single PC may require a large working memory (RAM). This is
especially the case when many cameras with high sensor resolution are used.

If you want to set up such a system we recommend to use PCs with 64 bit operating systems and more than 4 GB
of RAM.

Note

For DCx color cameras, the color conversion is done by software in the PC. When you use a color camera with a
high frame rate, the conversion might lead to a high CPU load. Depending on the PC hardware used you might not
be able to reach the camera's maximum frame rate.

Direct3D graphics functions

The uc480 driver can use Direct3D to display the camera image with overlay information (Microsoft DirectX

500

http://www.thorlabs.de/NewGroupPage9.cfm?ObjectGroup_ID=1822
http://www.thorlabs.de/NewGroupPage9.cfm?ObjectGroup_ID=1822
http://www.thorlabs.de/NewGroupPage9.cfm?ObjectGroup_ID=1822

© 2013 Thorlabs GmbH

1 General Information

13

Runtime had to be installed). On Windows systems, you can use the supplied "DXDiag" diagnostic tool to check
whether your graphics card supports Direct3D functions. To start the diagnostic tool, click "Run…" on the Windows
start menu (shortcut: Windows+R) and enter "DXDiag" in the input box.

On the "Display" page of the diagnostic tool, click the button for testing the Direct3D functions.

OpenGL graphics functions

For OpenGL version 1.4 or higher must be installed. The OpenGL graphics functions do not work with QT under
Linux.

Software Requirements under Linux

For operating the DCx camera under Linux the following components must be installed:

Component Version

Linux-Kernel 2.6.9 up to 2.6.24

The standard C library libc/glibc 2.0 or higher

GNU Compiler Collection gcc 3.4 or higher

POSIX Thread Library
(POSIX Threads Enabled libc)

-

bash or sh shell

(for running the installation script)

-

Qt (for compiling the demo program) -

© 2013 Thorlabs GmbH14

DCx Cameras

1.4 DCx Camera Family
DCx cameras stand for a range of compact and cost-effective cameras for professional use in industrial, security
and non-industrial applications. Equipped with the widely used USB 2.0 and particularly USB 3.0 ports, they can
easily be interfaced with a vast variety of systems. The images are digitized in the camera and transmitted digitally
to the PC. An additional frame grabber is not required.

DCU cameras have state-of-the-art CCD sensors while the DCC models are CMOS based. The CMOS models use
either the global or the rolling shutter method; the CCD models use only the global shutter method.

The DCx cameras are available as monochrome and color versions, DC3240 series has a NIR version as well.
The Model Comparison chapter shows the most important features of every series at a glance.

USB 3.0 DCC3240x CMOS Cameras

Compact, fast and lightweight. The new DCC3240x. The 29 x 29 x 29 mm small
camera housing is not only ultra-compact, but due to its magnesium casing and a total
camera weight of 43 g, it is also ultra-lightweight and robust. The powerful camera
offers a bandwidth of 400 MByte/s via USB 3.0. Power is supplied via the USB bus,
hence an extra power cable is obsolete.

With its lockable Micro USB connector the camera is perfectly suited even for rough
environments. Offering trigger and flash as well as two GPIOs (General Purpose I/O),
which can also be changed into a serial interface (RS232). Hence, peripheral devices
can easily be triggered or controlled.

But also the camera’s inner values are outstanding: brightness corrections are easily
realized by a comfortable 12 bit lookup table and hardware gamma. 12 bit color depth
offers a by factor 16 increased level of detail compared to the usual 8 bit. Hardware
based data preprocessing saves additional CPU resources.

USB 2.0 DCC1240x (CMOS) and DCC22xX (CCD) Cameras

The DCC1240X and DCC22xX series feature a robust metal housing with a standard
mini-B USB 2.0 connector. Connection is additionally possible via a lockable micro D-
sub connector which also carries the opto-isolated I/O signals.

The USB 2.0 interface is meanwhile available in every standard PC and notebook/
laptop and provides a gross bandwidth of 480 Mbps. The camera is connected and
powered through the USB port by just a single cable.

USB2.0 DCC1545M and DCC1645C Cameras

The DCC1x45X series features extremely compact cameras with high-speed CMOS
sensors. The LE models are designed for professional use in non-industrial applications.
Through the use of the widespread USB 2.0 technology, the cameras can easily be
interfaced with a vast variety of systems. These cameras are available with a plastic
housing with CS-mount lens adapter.

30

459

© 2013 Thorlabs GmbH

1 General Information

15

1.5 Contents
The DCx Camera Manual contains all the information you need for operating your DCx camera. It comprises the
following parts:

Section A: Camera basics

In this section you will find a lot of important information on the technical background of your USB camera. This
section contains explanations on the DCx's operating modes , on sensor technology , important camera
parameters , and the USB interfaces. We recommend to read this chapter to become familiar with the
general functionality of the DCx Cameras.

Section B: Operation

Quick start to using your DCxCamera

Installing and Using DCx Camera software
These sections show how to connect cameras and start operation using the software tools uc480 Camera
Manager and uc480 Viewer.

Application notes by camera model
This section explains special features and limitations of some camera models.

Section C: Programming

First steps to programming with your DCxCamera

How to proceed
If you are not yet familiar with DCxCamera programming, we suggest that you first explore the basic functional
flows in this chapter. The function blocks contain almost all the functions available for the uc480 API ordered by
topics. The flowcharts help to easily find the appropriate API function for a certain task.

Description of functions /Description of AVI functions
These chapters cover all the functions of the uc480 API in alphabetic order.
The AVI functions for video recording are implemented by the uc480_tools.dll which is also included in the
DCxCamera software package.

Obsolete functions
This chapter lists obsolote API functions and recommended alternatives.

Lists and programming notes
In this chapter, you will find useful information on how to use the DCxCamera programming API. Programming
environments, modes for DCxCamera color and image display as well as the automatic image control functions
are discussed here.

Section D: Specifications

Specifications
All information on the camera's sensor and performance , mechanical as well as electrical specifications

 are contained in this section.

Accessories
Here you will find a list of accessories for DCx Cameras sorted by model.

Appendix

Information on Troubleshooting

Status LEDs on USB DCx cameras

Color and memory formats

uc480 parameter file (ini file)

Definition of IP protection classes

17 23

44 51

54

56 67

63

127

129

155 359

379

454

458

460 472

487

497

499

501

502

504

509

© 2013 Thorlabs GmbH16

DCx Cameras

1.6 What's New in this Version?
Version 4.20 of the DCxCamera software package includes many new features and enhancements. The following
table gives you an overview of the major new functions.

Please make sure to also read the file named WhatsNew.txt which you will find in the C:\Program Files
\Thorlabs\DCx Cameras\Help directory when the installation is completed. This file contains late-breaking
information on new functions and fixed issues.

New in Version 4.20

Cameras & functions Described in chapter

CCD models with hardware revision 3:

Improved long time exposure function

12 bit per pixel now also available for USB 2.0 cameras

Camera and sensor data

More functions for the USB 3 DCC3240 camera series:

Hot pixel corrections, color conversion, gamma and LUT are now
integrated at the hardware level for DCC3240 models. This
reduces PC load and further enhances color reproduction quality
significantly.

An event/message indicates when the transfer speed changes
from USB 2.0 to USB 3.0 and vice versa.

-

The is_Measure() function allows the measurement of the image
sharpness in the current image. The sharpness is returned as a
relative value. For this function a new camera demo is added.

is_Measure()

New color formats are added:

IS_CM_RGB12_PACKED

IS_CM_RGBA12_PACKED

IS_CM_BGR12_PACKED

IS_CM_BGRA12_PACKED

IS_CM_RGB8_PLANAR

The following formats are renamed and the previous formats are
moved to the uc480_deprecated.h header file:

IS_CM_BGR10V2_PACKED (new IS_CM_BGR10_PACKED)

IS_CM_RGB10V2_PACKED (new: IS_CM_RGB10_PACKED)

IS_CM_BGR555_PACKED (new: IS_CM_BGR5_PACKED)

The following formats are moved to the uc480_deprecated.h
header file as they are identical to existing formats:

IS_CM_BAYER_RG8 (now: IS_CM_SENSOR_RAW8)

IS_CM_BAYER_RG12 (now: IS_CM_SENSOR_RAW12)

IS_CM_BAYER_RG16 (now: IS_CM_SENSOR_RAW16)

is_SetColorMode()

Color and memory formats

New camera demos:

Simultaneous opening of multiple cameras and sending a single
software trigger (Multi-camera demo)

Measuring of the image sharpness in an AOI of the current image
(Measure sharpness demo)

See separate manual for the uc480 samples

In the is_AOI() function the IS_AOI_MULTI_MODE_AXES
parameter was renamed to IS_AOI_MULTI_MODE_X_Y_AXES.
The old parameter was moved to the uc480_deprecated.h
header file.

is_AOI()

Older versions

See the History of uc480 Software Versions and History of uc480 API functions chapters.

460

290

319

502

159

509 516

© 2013 Thorlabs GmbH

2 Camera Basics

17

2 Camera Basics
This chapter explains the basics of DCx Camera technology.

Operating modes

Image display modes

Sensor

Reading out partial images

Digitizing images

Camera parameters

Firmware and camera start-up

Digital inputs/outputs

USB interface

2.1 Operating Modes
DCx Cameras support the following operating modes:

Freerun mode

Trigger mode

Standby

2.1.1 Freerun Mode

In freerun mode, the camera sensor captures one image after another at the set frame rate. Exposure and readout/
transfer of the image data are performed in parallel. This allows the maximum camera frame rate to be achieved.
The frame rate and the exposure time can be set separately. The captured images can be transferred one by one
or continuously to the PC. If trigger mode is active, you need to disable it before activating freerun mode.

Note

Note on the schematic diagrams: These illustrations show a schematic view of the image capture sequence. The
sensor exposure and readout times and the transmission times depend on the camera model and settings. The
pre-processing time depends on the API functions you are using (e.g. color conversion, edge enhancement).

For more information on flash timing see the Digital In-/Output (Trigger/Flash) chapter.

Continuous mode (live mode)

Images are captured and transferred continuously. You can use the DCxCamera flash outputs.

Freerun mode (live mode)

* Flash function optional. See also Digital in-/output (trigger/flash) .

Note

In freerun mode the flash function starts with the second image as the setting of the flash timing depends on the
finish of the first image. If you change the flash timing during operation, the freerun mode will restart. Therefore the
first image after the change is black.

17

21

23

34

39

44

46

47

51

17

19

20

49

49

© 2013 Thorlabs GmbH18

DCx Cameras

Single frame mode (snap mode)

The next image exposed by the sensor will be transferred. In this mode, flash is not making sense (only manually).

Freerun mode (snap mode)

See also:

Basics: Shutter methods

Basics: Trigger mode

Basics: Applying new parameters

Programming:

Capture modes

30

19

46

134

© 2013 Thorlabs GmbH

2 Camera Basics

19

2.1.2 Trigger Mode

In trigger mode, the sensor is on standby and starts exposing on receipt of a trigger signal. A trigger event can be
initiated by a software command (software trigger) or by an electrical signal via the camera’s digital input (hardware
trigger).

This chapter describes the different trigger modes you can use with the DCx Cameras. To choose a mode, go to
the camera properties of the uc480 Viewer application or use the API command.

Note

Note on the schematic diagrams: These illustrations show a schematic view of the image capture sequence. The
sensor exposure and readout times and the transmission times depend on the camera model and settings. The
pre-processing time depends on the API functions you are using (e.g. color conversion, edge enhancement).

For more information on flash timing see the Digital In-/Output (Trigger/Flash) chapter.

Software trigger mode

When this mode is enabled, calling the "Snap" function triggers the capture of an image, which is then transferred
to the PC. If you call the "Live" function in this mode, the image capture is triggered continuously and images are
transferred continuously.

Software trigger mode with continuous image capture

* Optional flash function. See also Digital input/output (trigger/flash)

Hardware trigger mode

When this mode is enabled, calling the is_FreezeVideo() (Snap) function makes the camera ready for
triggering just once. When the camera receives an electrical trigger signal, one image is captured and transferred.

If you call the is_CaptureVideo() (Live) function, the camera is made ready for triggering continuously. An
image is captured and transferred each time an electrical trigger signal is received; the camera is then ready for
triggering again (recommended procedure).

Attention

When you use triggered image capture, the camera is only ready to process the next trigger signal after completion
of the data transfer to the PC. Trigger events that occur during image exposure or data transfer are ignored. An
internal counter records the number of ignored trigger events and can be read out from the PC.

104 327

47

47

223

177

© 2013 Thorlabs GmbH20

DCx Cameras

Hardware trigger mode with continuous image capture

* Optional flash function. See also Digital input/output (trigger/flash)

Frame rate in trigger mode

With many sensors, the maximum frame rate is lower in trigger mode than in freerun mode because these sensors
expose and transfer sequentially. Which frame rate is possible in trigger mode therefore depends on the exposure
time. The time required for capturing a frame in trigger mode can be approximated with the following formula:

)
rate max.frame

1(time exposure Current tcapture

Example: At the maximum exposure time, the frame rate is about half as high as in freerun mode; at the minimum
exposure time, the frame rate is about the same.

Freerun synchronization

This mode is currently not supported by DCx Cameras.

See also:

Basics: Freerun mode

Basics: Digital input/output (trigger/flash)

uc480 Viewer: Trigger

Programming:

Image capture modes: Trigger

2.1.3 Standby

DCx Cameras can be set to a power-saving standby mode. Standby mode switches off the sensor of CMOS
cameras and the timing board of CCD cameras. The camera remains open in the software.

In standby mode, the camera cools down and the number of hot pixels visible when longer exposure times are
used is reduced.

Standby is the default state when the camera is not open in the software. When you open the camera or switch to a
different mode (freerun or trigger mode), the camera wakes up from standby mode.

Note

In standby mode, you can continue to use the camera's digital inputs or outputs.

47

17

47

103

134

© 2013 Thorlabs GmbH

2 Camera Basics

21

2.2 Image Display Modes
The uc480 driver provides different modes for displaying the captured images on Windows systems. We
recommend using the Bitmap mode or the Direct3D functions, depending on your specific application.

For a list of API functions for image display see How to proceed: Image display .

Attention

The "DirectDraw BackBuffer" and "DirectDraw Overlay Surface" display modes are obsolete. Please use the
Direct3D functions instead (see also Obsolete functions).

1. Bitmap mode (Device Independent Bitmap, DIB)

In Bitmap mode, images captured by the DCxCamera are written to the random access memory of the PC.
Programming the image display is up to the user. The application software uses the is_RenderBitmap()
function to initiate the image display by the graphics card. This may result in a slightly higher CPU load as
compared to the Direct3D display.

The advantage of Bitmap mode is that it is compatible with all graphics cards and that image data in the memory is
directly accessible. Programming of overlay functions is up to the user. Since the operating system controls the
image display, the image may be completely or partly overlapped by other windows and dialog boxes.

How the Bitmap mode works

2. Direct3D mode (only under Windows with DirectX)

In this mode, the uc480 driver writes the image data to the invisible area of the graphics card. This process runs
automatically and does not have to be controlled by the application software. It requires an installed Direct3D driver,
sufficient memory on the graphics card and Direct3D function support by the graphics card (see System
requirements). For this purpose, graphics cards generally provide better performance than graphics chips
integrated on the mainboard. In Direct3D mode, the CPU load may be lower than in Bitmap mode. You can display
overlay data and also scale the video image.

The Direct3D mode and the overlay functions can be configured using the is_DirectRenderer() API
function.

How the Direct3D mode works

OpenGL mode

OpenGL stands for Open Graphics Library and it is an interface specification for graphics hardware. Unlike
Direct3D OpenGL is not only available under Windows but also under Linux and Mac OS, if OpenGL is supported
by the graphics hardware. There are several implementations of OpenGL, such as e.g. NVIDIA® or AMD/ATI. The

133

379

297

56

198

© 2013 Thorlabs GmbH22

DCx Cameras

implementations are always dependent on the graphics card manufacturer.

How the OpenGL mode works

Comparison of the display modes

The following table illustrates the major differences between the display modes:

Bitmap mode Direct3D mode OpenGL mode

Graphics card
requirements

Low. No special graphics
hardware required. Runs on
all systems.

High. Graphics card has to
support Direct3D. Does not
run on all systems.

High. Graphics card has to
support OpenGL.

Operating system Windows, Linux Only Windows with DirectX Cross-platform

Programming effort Greater. Memory
management, event handling
and display performed by the
application.

Low. Memory management,
event handling and display
performed by DirectX.

High. OpenGL itself does not
provide functions for opening
windows or reading files.
However, there are related
libraries, e.g. GLUT.

CPU load Slightly increased by copying
of data.

Low. Display performed by
graphics card.

Low. Display performed by
graphics card.

Overlay functions Not available. A simple
overlay can be programmed
by the user.

Integrated. Complex overlays
can be displayed without
flicker.

Integrated.

Access to image
memory

Direct access possible.
Image data already provided
in user memory.

Possible using Steal Mode.
Single images can be copied
to the user memory.

Direct access to graphics
card and image memory.

© 2013 Thorlabs GmbH

2 Camera Basics

23

2.3 Sensor

Sensor sizes

Micro lenses

Color filter (Bayer filter)

Hot pixels

Shutter methods

Line scan mode

2.3.1 Sensor Sizes

The size of a digital camera sensor is usually specified in inches. However, the specified value does not indicate
the actual size of the active sensor area. The sensor size specifications date back to the formerly used tube
systems: The curvature of the imaging surface of the camera tube caused distortions to the display, reducing the
usable capture area of a 1” tube to a rectangle with a diagonal of 16 mm.

With the introduction of the semiconductor sensor technology, the dimensional specifications were taken over from
tube systems. For this reason, a sensor whose active area diagonal measures 16 mm is specified as a 1-inch
sensor. The following illustrations show the most common sensor sizes. The diameter in inch multiplied with 2/3
equals approximately the actual sensitiv area in millimeters.

Common sensor sizes (in inch)

Comparison of common sensor sizes and examples for different
fields of view

The size of each single sensor cell (pixel) depends on the size of the active sensor area and the resolution. In
general, less pixels over the same sensor area (or a larger sensor area with the same resolution) will result in

23

24

26

28

30

33

© 2013 Thorlabs GmbH24

DCx Cameras

greater photo sensitivity of the sensor.

2.3.2 Micro Lenses

Micro lenses improve the fill factor

The fill factor is the percentage of the pixel area that is exposed to light during exposure. Ideally this would be
100 %. Since other elements are located on the sensor surface besides the light-sensitive photodiodes, this value
may be reduced to approx. 30–50 %, depending on the sensor technology. The use of micro lenses compensates
for this and increases the fill factor to 90 % or more. Micro lenses collect the light that falls onto a photocell, thus
increasing the useable sensor area.

Using micro lenses to increase the effective fill factor

CMOS pixel design with Bayer filter (red) and micro lens

© 2013 Thorlabs GmbH

2 Camera Basics

25

Micro lenses with CRA correction

Some sensors have micro lenses offset to the sensor edge. They compensate for shading created by obliquely
incident light. The angle of incident light is called Chief Ray Angle (CRA), the micro lens offset is thus called CRA
correction. The amount of micro lens shift is specified in degrees and refers to the micro lenses in the corners of
the sensor.

Micro lenses without CRA correction

Image captured without CRA correction shows
shading

Micro lenses with CRA correction

Image captured with CRA correction

Note

Using parallel light on sensors with CRA correction may cause slight color variations. These may occur, for
example, if telecentric lenses are used. The following models are equipped with sensors with offset micro lenses:

DCC1240x/DCC3240x

DCC1645C

461

466

© 2013 Thorlabs GmbH26

DCx Cameras

2.3.3 Color Filter (Bayer filter)

For technical reasons, digital image sensors can only detect brightness information, but no color information. To
produce color sensors, a color filter is applied to each photocell (pixel). The arrangement of the color filters is
illustrated in the following figure. Two out of every four pixels have a green filter, one pixel has a red filter and one
has a blue filter. This color distribution corresponds to the color sensitivity of the human eye, and is called the Bayer
filter pattern. With the help of the Bayer pattern the correct brightness and color information can be calculated for
each pixel. Full sensor resolution is retained.

Bayer RGB filter pattern

Bayer conversion

A Bayer conversion, also referred to as de-Bayering, is carried out to determine the color information from the raw
sensor data (raw Bayer). By default all DCx Cameras transmit the image data to the PC in raw Bayer format. The
PC then uses the functions of the uc480 API to convert the image data to the color format you need for displaying
or further processing the data.

To convert the colors, a filter mask moves over the image and calculates a color value for each pixel from the
surrounding pixels. The uc480 API provides two filter masks that differ in image quality and CPU load.

Normal Quality (Mode IS_CONV_MODE_SOFTWARE_3x3/IS_CONV_MODE_HARDWARE_3x3)
A smaller filter mask is used for conversion. This algorithm has a low load on the CPU. The filter's averaging
function may cause a slight blur. Noise is reduced. This filter is recommended for image processing tasks.

High Quality (Mode IS_CONV_MODE_SOFTWARE_5x5)
A large filter mask is used for conversion. This algorithm offers very accurate color positioning and an increased
level of detail. The CPU load is higher than with the normal filter. This filter is recommended for visualization
applications.

Note

Software conversion with high quality should only be used for sensors whose green pixels have the same
sensitivity. This applies to the following sensors:

DCU223C / DCU224C

DCC1240C, DCC3240C

For all other sensors, we recommend using the standard filter mask.

© 2013 Thorlabs GmbH

2 Camera Basics

27

Bayer conversion using the standard mask

See also:

Color conversion: is_SetColorConverter()

uc480 Viewer: Format

317

99

© 2013 Thorlabs GmbH28

DCx Cameras

2.3.4 Hot Pixels

Definition

Hot pixels (or in a broader sense, defective pixels) are pixels that do not react linearly to incident light – or do not
react at all. They occur for various reasons, such as contamination during sensor production or sensor age, and
with both CCD and CMOS sensors. CCD sensors generally have fewer hot pixels than CMOS sensors under the
same operating conditions. With darkened sensors and prolonged exposure times, hot pixels are visible as
individual bright dots in the image. The following factors promote the occurrence of hot pixels:

Long exposure times

High gain settings

High sensor operating temperature

Hot pixels detected in a monochrome camera

Hot pixels detected in a color camera

Hot pixel correction

During the manufacture of our cameras, all sensors that will be used in DCx Cameras are checked for hot pixels. In
the process, images are taken with a darkened sensor and long exposure times. Pixels with a brightness higher
than a specific value are classified as hot pixels. A list of the coordinates of each hot pixel is stored in the camera
EEPROM. The hotpixel correction is done in the uc480 driver. However, some sensors also provide an internal
hotpixel correction.

The maximum number of hot pixels stored in a DCx camera is:

© 2013 Thorlabs GmbH

2 Camera Basics

29

DCx model max. hot pixels stored

DCC1240x, DCC1545M, DCC1645C, DCC3240x (CMOS) 768

DCU223x, DCU224x (CCD) 20

How many hot pixels are on the camera's internal list depends above all on the defined threshold values. It is not
an indication of the quality of the sensors used.

When you enable the "Hotpixel correction" function in the DCx software, the software automatically corrects the hot
pixels in the captured image by calculating the average from the brightness value of two neighboring pixels. When
using color sensors, the hot pixel is corrected with the appropriate color in raw Bayer format, i.e. before color
conversion. The correction does not work with activated subsampling and binning factors greater than 2x.

Note

The sensors are tested during manufacturing also for cold pixel and dead pixels. Sensors with dead pixel clusters
(more than two neighboring defective pixels of the same color) are rejected by our quality control. When the
camera is operated in very warm ambient conditions, other defective pixels can occur, however.

Defining additional hot pixels

If additional hot pixels occur during use of the camera, you can add them to the camera's internal hot pixel list. To
do this, use the API function given below.

See also:

uc480 Viewer: Hot pixel correction

uc480 Hotpixel Editor

Programming: is_HotPixel()

110

123

260

© 2013 Thorlabs GmbH30

DCx Cameras

2.3.5 Shutter Methods

Global shutter

Rolling shutter

Rolling shutter with global start

Note

Note on the schematic diagrams: These illustrations show a schematic view of the image capture sequence. The
sensor exposure and readout times and the transmission times depend on the camera model and settings.

For more information on flash timing see the Digital In-/Output (Trigger/Flash) chapter.

General

The image is recorded in the sensor in four phases:

Reset pixels of the rows to be exposed

Exposure of pixel rows

Charge transfer to sensor

Data readout

The sensor cells must not be exposed during the readout process. The sensors of the DCx Cameras have no
mechanical shutters, but work with electronic shutter methods instead. Depending on the sensor type, either the
rolling shutter method or the global shutter method is used.

Global shutter

On a global shutter sensor, all pixel rows are reset and then exposed simultaneously. At the end of the exposure,
all rows are simultaneously moved to a darkened area of the sensor. The pixels are then read out row by row.

Exposing all pixels simultaneously has the advantage that fast-moving objects can be captured without geometric
distortions. Sensors that use the global shutter system are more complex in design than rolling shutter sensors.

All CCD sensors as well as some CMOS sensors use the global shutter method.

Global shutter sensor in live mode

30

31

32

47

© 2013 Thorlabs GmbH

2 Camera Basics

31

Global shutter sensor in trigger mode

* Optional flash function. The start time and duration are defined by the flash delay and duration parameters (see
also Camera settings: I/O).

Rolling shutter

With the rolling shutter method, the pixel rows are reset and exposed one row after another. At the end of the
exposure, the lines are read out sequentially. As this results in a time delay between the exposure of the first and
the last sensor rows, captured images of moving objects are distorted.

Example for the rolling shutter effect with a moving car

To counteract this effect, the DCx Camera software provides a global flash window where you set the time by
which flash activation is delayed. You can also specify the flash duration. This allows implementing a global flash
functionality which exposes all rows of a rolling shutter sensor simultaneously.

Rolling shutter sensors offer a higher pixel density compared to global shutter CMOS sensors. The rolling shutter
system is used in DCC Cameras with high-resolution CMOS sensors.

Note

Some CMOS senors with global shutter can be operated also with rolling shutter. The operation in the rolling
shutter mode is used to reduce the image noise. This function is only supported from the camera models
DCC1240x/DCC3240x .

Rolling shutter sensor in live mode

104

461

© 2013 Thorlabs GmbH32

DCx Cameras

Rolling shutter sensor in live mode with global flash window

Rolling shutter sensor in triggered mode with global flash window

* Optional flash function. The start time and duration are defined by the flash delay and duration parameters (see
also Camera settings: I/O).

Rolling shutter with global start

Some rolling shutter sensors also provide a global start mode, which starts exposure of all rows simultaneously
(see illustration). For best results, use a flash for this mode. No light is allowed to fall on the sensor outside the
flash period because otherwise the image brightness will be distributed unevenly.

Rolling shutter sensor in trigger mode with global start function

* Optional flash function. The start time and duration are defined by the flash delay and duration parameters (see
also Camera settings: I/O).

104

104

© 2013 Thorlabs GmbH

2 Camera Basics

33

2.3.6 Line Scan Mode

Area scan sensor (matrix)

The sensors of area scan cameras have a matrix of many (usually between several hundred and several thousand)
rows and columns of pixels. State-of-the-art area scan sensors use only square pixels with a consistent pixel pitch.

Area scan cameras are suitable for applications in which stationary or moving objects should be captured as
completely as possible in one image capture.

Line scan mode

In some applications, however, it is necessary to read out and transfer only one sensor line instead of the entire
sensor area. This applies, for example, to endless web inspection systems. These systems often use line scan
cameras for this reason. Their sensors have only one pixel row, which they can read out at very high speeds in the
kilohertz (kHz) range. Some DCxCamera models have area scan sensors that optionally also offer a line scan
mode. This mode can read out any pixel row of the sensor at high speed.

There are two line scan modes to distinguish:

Fast line scan

In this mode, the sensor achieves very high line scan rates. Several hundred to thousand lines are combined and
transferred in one frame. The camera can be triggered on the beginning of a frame, but not on each individual
line. You can choose any line of the area scan sensor for the line scan mode. Color images are not supported in
this mode because Bayer color sensors need at least two neighboring lines for color calculation.

Triggered line scan

In this mode, the sensor achieves lower line scan rates than in fast line scan mode. The camera can be triggered
on each individual line. Several hundred to thousand lines are combined and transferred in one frame.
Color images are possible in this mode because Bayer color sensors can use two lines.

Note

The line scan mode is currently only supported by the monochrome DCC1240M and DCC3240M,N models in
form of the fast line scan mode. The triggered line scan mode is not supported by any camera model yet.

See also:

uc480 Viewer: Properties > Shutter

Programming:

Function: is_DeviceFeature()

26

461

115

192

© 2013 Thorlabs GmbH34

DCx Cameras

2.4 Reading Out Partial Images
The camera sensors have defined resolutions which are given as the number of pixels (width x height). However,
for some applications it may be necessary to read out only a selected part of the sensor area or to reduce the local
resolution. For this purpose, the DCx Cameras provide various functions:

Area of interest (AOI)

Subsampling (skipping) pixels

Binning (combining) pixels

These functions reduce the amount of data to be transferred and thus allow you to increase the frame rate
considerably, depending on the camera model.

2.4.1 Area of Interest (AOI)

Using this function, you can set the size and position of an area of interest (AOI) within an image. In this case, only
data included in this AOI will be read out and transferred to the computer. The smaller partial image enables the
camera to use a higher frame rate.

For information on the AOI position grid and the frame rates that your camera model can achieve with AOI, see the
model specifications in the Camera and sensor data chapter.

AOI readout on monochrome sensors

AOI readout on color sensors

Note

Step widths for AOI definition (position grid): The available step widths for the position and size of image AOIs
depend on the sensor. The values defining the position and size of an AOI have to be integer multiples of the
allowed step widths.

For details on the AOI grids of the individual camera models, please see Camera and sensor data and click a
camera model.

Please note that, after defining an AOI, the resulting image may be darker if the camera cannot maintain the
originally set exposure time due to the increased frame rate.

34

37

38

460

460

© 2013 Thorlabs GmbH

2 Camera Basics

35

Multi AOI

The Multi AOI function allows defining more than one AOI in an image and transferring these AOIs all at the same
time. Only DCC1240x models support this feature. In the Multi AOI mode you can define two or four AOIs in one
image and transfer them simultaneously. The AOIs are positioned side by side or one below the other, and share
the same X or Y axis.

uc480 Demo - Multi AOI on the DCC1240C

© 2013 Thorlabs GmbH36

DCx Cameras

Sequence AOI mode

Apart from the multi AOI mode, DCC1240x and DCC3240x also support the sequence AOI mode. This mode
allows to define up to four AOIs, which need to have the same size but may differ in position, exposure time or gain
settings.

uc480 Viewer - sequence AOI mode

See also:

uc480 Viewer: Size

uc480 Viewer: Multi AOI

uc480 Viewer: Sequence AOI

Programming: is_AOI()

113

97

112

113

159

© 2013 Thorlabs GmbH

2 Camera Basics

37

2.4.2 Subsampling

Subsampling is a technique that skips multiple sensor pixels when reading out image data. This reduces the
amount of data to be transferred and enables higher camera frame rates. The captured image has a lower
resolution but still the same field of view compared to the full-resolution image. This mode can be used as a fast
preview mode for high-resolution cameras.

Color subsampling as performed by most color sensors skips pixels while maintaining colors (see illustration). For
some monochrome sensors, the camera also performs color subsampling, resulting in slight artifacts.

Monochrome sensors and some color sensors ignore the Bayer pattern and the color information gets lost (mono
subsampling).

Depending on the model, DCx Cameras support different subsampling factors. Subsampling of horizontal and
vertical pixels can be enabled independently.

The Camera and sensor datas chapter lists the subsampling methods and factors supported by each camera
model.

Subsampling on monochrome sensors

Subsampling on color sensors

460

© 2013 Thorlabs GmbH38

DCx Cameras

2.4.3 Binning

Binning is a function that averages or adds multiple sensor pixels to obtain a single value. This reduces the amount
of data to be transferred and enables higher camera frame rates. The captured image has a lower resolution but
still the same field of view compared to the full-resolution image. This mode can be used as a fast preview mode
for high-resolution cameras.

Color binning, as performed by most color sensors, combines only pixels of the same color (see also the Color filter
(Bayer filter) chapter). For some monochrome sensors, the camera also performs color binning, resulting in
slight artifacts.

Most monochrome sensors and some color sensors combine neighboring Bayer pattern pixels; in this case, the
color information gets lost (mono binning).

With CCD sensors, binning makes the images brighter because the pixel values are added up. With CMOS
sensors, pixel values are usually averaged; this reduces image noise.

Depending on the model, DCx Cameras support different binning factors. Binning of horizontal and vertical pixels
can be enabled independently.

The Camera and sensor data chapter lists the binning methods and factors the individual camera models
support.

Binning on monochrome sensors

Binning on color sensors

26

460

© 2013 Thorlabs GmbH

2 Camera Basics

39

2.5 Digitizing Images

Characteristics and LUT

Bit depth and digital contrast adjustment

2.5.1 Characteristics and LUT

When perceiving or imaging a scene, the form of the imaging characteristic is crucial for displaying the differences
in brightness. With image processing (e.g. applications such as edge detection and character recognition), linear
characteristics are generally required. The human eye, on the other hand, perceives differences in brightness
based on a logarithmic characteristic, which often approximates a gamma characteristic in practice. All three forms
will be shown in the following.

Linear characteristic

If a system (e.g. a camera with a conventional CCD sensor) yields double the output value for double the
brightness, the system features a linear characteristic:

Imaging with linear characteristic

Gamma characteristic

Gamma characteristics (or gamma curves) are named after the Greek formula symbol γ. Gamma curves are
power functions of the form

1

xy

and are often used in photography or image display on computer screens. A gamma value of 1 generates a linear
characteristic again. A curve with the value γ = 2.2 used for computer screens is shown in the figure below.

Imaging with gamma characteristic

Such a gamma characteristic brightens dark areas of an image, which corresponds more to the perception of the
human eye. In light areas of an image, the differences in brightness are condensed for this.

39

41

© 2013 Thorlabs GmbH40

DCx Cameras

Image with linear characteristic Image with gamma characteristic

Logarithmic characteristic

The effect of the logarithmic characteristic is even stronger. Here, the characteristic follows the function

)(lg xy

The following diagram illustrates how very large jumps in brightness in light areas of a scene only cause small
changes in image brightness. This explains why image sensors with a logarithmic characteristic, in particular, are
ideal for imaging scenes with very high dynamic range.

Imaging with logarithmic characteristic

Lookup table (LUT)

With a lookup table (LUT) it is easy to apply characteristic curves to digital images. A LUT is a table which assigns
an output value to every possible input value. The figure below shows a LUT which would binarize an image: For an
8 bit image, for example, this LUT would replace all pixels with gray values 0...127 with value 0 and all pixels with
gray values 128...255 with value 255.

Using LUTs has the advantage that calculations can be done very fast. Typical applications of LUTs are enhancing
image contrast, or gamma characteristics.

LUT characteristic for binarizing an image

© 2013 Thorlabs GmbH

2 Camera Basics

41

2.5.2 Bit Depth and Digital Contrast Adjustment

Digitizing

Image sensor pixels first generate an analog voltage signal proportional to the amount of light that strikes them.
The image is digitized for further processing, i.e. the stepless signal is converted to a digital numerical value. The
following figure shows this using a gray gradient as an example

Various bit depths using a gray-scale gradient as an example

If the stepless gradient is imaged in a digital range in 2 bits, for example, the result is 22 = 4 levels; for 4 bits, it is
24 = 16 levels, and so on. The intermediate brightness values of the original gradient are irreversibly lost after
digitization.

With around 200 levels or more, the jumps in brightness can no longer be discerned with the eye, which is why
current monitors and digital cameras use 8 bits (256 levels) per color channel (fully adequate for visualization).

Bit depth in image processing

If digital image data undergoes further image processing, a bit depth greater than 8 may be necessary. The
computer is able to differentiate between these very fine differences in brightness (no longer discernable by the
eye) and process them. This is why industrial cameras often use 12 bits.

Bit depth Brightness levels

8 28 = 256

10 210 = 1024

12 212 = 4096

14 214 = 16.384

Note

Greater bit depths require extremely low-noise image sensors, however. As soon as the differences in brightness
created by noise are greater than the digitization levels, no further data is gained.

Bit depth by sensors

Platform USB 2.0 USB 3.0

CMOS sensors 8 bit 10 bit

CCD sensors 8 bit -

Note

Color formats with a bit depth of more than 8 bits per channel are only supported by USB 3 DCC3240x camera
models. Using color formats with higher bit depth increases the bandwidth used by a camera.

Histogram and contrast

The brightness distribution of digital images is represented in a histogram. If an image has optimum contrast, the
histogram includes practically all brightness values between 0 and the highest value (255 in 8-bit images). If an
image has low contrast, the histogram only includes a small number of the values; the image appears dull:

© 2013 Thorlabs GmbH42

DCx Cameras

Image capture and histogram with minimal contrast (le.) and with optimum contrast after a contrast
adjustment (ri.)

For improved display on the screen or when printed, the histogram can be spread to optimally utilize the possible
brightness levels. For this purpose, the dark parts of the image are further darkened via an LUT characteristic and
the light parts of the image are brightened. Thus the human eye can better differentiate between the different
brightness levels; the image has more contrast.

It must be noted, however, that subsequent processing with a computer will not yield more data. Therefore,
subsequent contrast adjustment via software is not necessary for use in image processing. The computer can
differentiate between the differences in brightness without contrast adjustment.

Advantage of greater bit depth with contrast adjustment

The bit depth in the output image is crucial for contrast adjustment. The following figures illustrate this. In the first
example the 8 bit output image contains fewer than 100 brightness levels, as there are no dark or very bright parts.
The image is low-contrast.

With a contrast adjustment, the values of the histogram are spread in such a way as to create a contrast-rich
image. The fewer than 100 brightness values are now distributed across levels 0 to 255; gaps arise in the
histogram and are visible as jumps in brightness in the resulting image.

Contrast adjustment with 8 bit output data

The second example shows the same output image with a 10 bit bit depth right at the time of capture. This image
also has low contrast, as it features only average brightness values. The greater bit depth allows the brightness

© 2013 Thorlabs GmbH

2 Camera Basics

43

values of the image to be imaged over 500 different digital levels, however. The entire histogram includes 1,024
values in the 10 bit image (in contrast to 256 values with 8 bits).

This means that a contrast adjustment can now be made for screen display without a reduction in quality. The 500
values of the output image are distributed over the 256 values of the 8-bit target image in such a way that optimum
contrast is the result. The large number of output values means that there are no gaps in the histogram.

Contrast adjustment with 10 bit output data

Note

This type of contrast adjustment can already be done in the camera when an image is digitized in 10 bits and
transferred in 8 bit. In this case, optimum utilization of the 8 bit data is also important for image processing.

© 2013 Thorlabs GmbH44

DCx Cameras

2.6 Camera Parameters

Pixel clock, frame rate, exposure time

Gain and offset

Automatic image control

Applying new parameters

2.6.1 Pixel Clock, Frame Rate, Exposure Time

Pixel clock

The basic parameter for camera timing is the pixel clock. It determines the speed at which the sensor cells can be
read out.

Attention

We recommend not setting the pixel clock any higher than necessary to achieve the desired frame rate.

An excessive pixel clock can cause delays or transmission errors. If the data is read from the sensor at a higher
speed (high pixel clock), you will also need a faster transmission over the data connection. Thus, by controlling the
pixel clock, you can also influence the bandwidth required for a camera.

The pixel clock influences the connected load and consequently the temperature inside the camera.

Frame rate

The possible range of settings for the frame rate depends on the currently selected pixel clock. You can select a
lower frame rate without changing the pixel clock. To set a higher frame rate, however, you need to increase the
pixel clock.

Exposure time

The exposure time depends on the currently selected frame rate and is preset to its reciprocal value. You can
select a shorter exposure time without changing the frame rate. To set a longer exposure time, however, you need
to reduce the frame rate.

Note

The increments for setting the exposure time depend on the sensor's current timing settings (pixel clock, frame
rate). The exposure time values are rounded down to the nearest valid value, if required. For this reason, the actual
exposure time can deviate slightly from the exposure time you have selected.

See also:

uc480 Viewer: Camera

is_PixelClock()

is_SetFrameRate()

is_Exposure()

2.6.2 Gain and Offset

Gain

In digital imaging, a voltage proportional to the amount of incident light is output by the sensor. To increase image
brightness and contrast, this signal can be amplified by an analog gain and offset before the digitizing process. The
results of analog signal processing are usually better than the results of digital post-processing.

Analog amplification of the read-out pixel values increases overall image brightness and contrast. Depending on
the sensor type, a global gain value for all pixels (master gain) or a separate gain value for each color (RGB gain)
can be set.

Note

Using Sensor Gain: A signal gain will also result in a noise gain. High gain settings are therefore not
recommended.

We suggest the following gain settings:

1. Enable the Gain boost function (is_SetGainBoost()).

44

44

45

46

93

294

329

216

95 331

© 2013 Thorlabs GmbH

2 Camera Basics

45

2. If required, adjust the gain setting with the master gain control.

Note

Linearity of sensor gain: You can set the gain factor in increments from 0 to 100.

For CCD sensors the gain increases usually not linear but disproportionate.

For CMOS sensors the gain increases linear. Some sensors have only 32 or fewer levels, so not each step is
assigned to a level.

The maximum gain factor settings also vary from sensor to sensor (see Camera- and sensor data).

Offset

Every digital image sensor has light-insensitive cells next to the active image area. These dark pixels are used to
measure a reference voltage (black level) which is subtracted from the image signal. This compensates thermally
generated voltages on the sensor which would otherwise falsify the signals.

Normally, the sensor adjusts the black level automatically. If the environment is very bright or if exposure times are
very long, it may be necessary to adjust the black level manually.

2.6.3 Automatic Image Control

The uc480 driver provides various options to automatically adjust the image capture parameters to the lighting
situation. These include:

Auto exposure shutter (AES)

Auto gain control (AGC)

Auto white balance (AWB)

Auto frame rate (AFR)

The auto functions are used to adjust the average brightness and color rendering of the camera image to their
setpoint values, while trying to keep the frame rate at the highest possible value.

All controls are configured using the is_SetAutoParameter() SDK function.

Auto exposure shutter (AES)

The control of the average brightness is preferably achieved by adjusting the exposure, i.e. you set the highest
possible exposure time before gain is controlled. The auto exposure feature always uses the current exposure
range which results from the selected pixel clock frequency and the frame rate. You can set separate control range
limits for exposure and gain.

Auto gain control (AGC)

The auto gain feature controls the camera master gain in a range from 0-100 %. You can set separate control
range limits for exposure and gain.

Auto frame rate (AFR)

With the exposure control function enabled, you can still change the frame rate manually or automatically to
maintain a dynamic exposure control range. A lower frame rate allows for longer exposure times, but then the live
image display may exhibit jitter. The objective of the automatic frame rate control is to set the frame rate to an
optimum value. This way, in all situations, the automatic exposure control can use the required control range at the
highest possible frame rate.

Auto white balance (AWB)

Depending on the lighting source, light can have different color temperatures so that the images may have a color
cast. At low color temperatures (e.g. light from incandescent lamps), the white content is offset towards a red hue.
At high color temperatures (e.g. light from fluorescent lamps), the white content is offset towards a blue hue.

The white balance control feature uses the RGB gain settings of the camera to correct the white level. This is
achieved by adjusting the gain controls within the 0-100 % range until the red or blue channel matches the average
brightness of the green channel. In order to manually influence the color rendering, you can adjust the setpoint
values for the red and blue channels relative to the green channel by using an offset value (see also uc480 Viewer:
Histogram).

Automatically disabling the control function

You can disable the control functionality automatically once the target value has been reached (approximately) and
after 3 regulations no improvement has been reached (API parameters IS_SET_AUTO_WB_ONCE and
IS_SET_AUTO_BRIGHTNESS_ONCE). An event/a message notifies the system of this (see also is_InitEvent()

460

303

86

© 2013 Thorlabs GmbH46

DCx Cameras

). Alternatively, you can keep the control feature enabled so that it responds to deviations from the target value.

Control speed

You can set the auto function speeds in a 0–100 % range. This influences the control increments. High speed
(100 %) causes a little attenuation of a fast-responding control and vice versa. The control functions for average
brightness and for color rendering use separate speeds.

In trigger mode, every frame is evaluated for automatic control. The freerun mode skips a number of frames by
default because in that mode, changes to the image parameters only become effective after one or more image
captures (see also Applying new parameters). With the "Skip Frames" parameter (API parameter
IS_SET_AUTO_SKIPFRAMES), you can select how many frames should be skipped in freerun mode (default: 4).
This parameter strongly influences the control speed. Choosing small values can destabilize the automatic control.

Note

For higher frame rates select for the "Skip frames" parameter a bigger value. This reduces the number of
automatic adjustments that must be done by the camera.

Hysteresis

The automatic control feature uses a hysteresis function for stabilization. Automatic control is stopped when the
actual value lies in a range between (setpoint - hysteresis value) and (setpoint + hysteresis value). It is resumed
when the actual value drops below (setpoint - hysteresis value) or exceeds (setpoint + hysteresis value). If the
hysteresis value is increased, the control function will stop sooner. This can be useful in some situations.

See also:

is_SetAutoParameter()

2.6.4 Applying New Parameters

New capture parameters (such as exposure time or gain settings) can be transferred to the camera via software at
any time. Depending on the operating mode, these settings will not always be immediately effective for next image,
however.

Freerun mode
In freerun mode, the camera is internally busy with capturing the next image while new parameters are
transmitted to the camera. Depending on the exact time of transmission, new parameters might only come into
effect two or even three images later.

Trigger mode
In this mode, the camera reverts to idle state between two images. When you change the camera parameters,
the new settings will be applied immediately to the next image.

2.7 Firmware and Camera Start
Every DCx camera has its own firmware that handles internal processes in the camera. The camera firmware
varies from model to model.

USB DCx Cameras have a two-tier firmware that is uploaded to the camera each to you connect it to a PC:

1. Common firmware (uc480 boot)
The general firmware identifies what camera model you have connected, and uploads the corresponding
firmware.

2. Model-specific firmware (e.g.: uc480 DC1240x series)
The model-specific firmware is named after the camera type and provides the functions of the relevant model.

Note

When you connect a USB DCxCamera with a Windows PC or a new USB port for the first time, it is detected as a
new device. This is normal standard behavior of the operating system.

The USB DCx Cameras firmware is part of the driver. The automatic upload always loads the firmware that
matches the driver installed in the camera.

276

46

306

© 2013 Thorlabs GmbH

2 Camera Basics

47

2.8 Digital Inputs / Outputs
All DCx cameras (see Model comparison), except DCC1545M and DCC1645C, come with opto-isolated inputs/
outputs that can be used for triggering the camera and for flash control. DC3240x cameras have in addition general
purpose I/Os (GPIO). Use of the GPIOs for flash control is possible to a certain degree. External triggering via the
GPIO is not supported.

See also:

Basics: Trigger mode

uc480 Viewer: Input/output

Specification: Electrical specifications

Programming:

is_IO()

2.8.1 Using Digital Inputs/Outputs

Digital input (trigger)

Models with optocoupler input can use the digital input for externally triggering the image capture, or query the
applied signal level.

In trigger mode , a digital signal is applied to the camera's input. You can determine whether the camera will
respond to the rising or falling edge of the digital signal. After an internal delay, the sensor is exposed for the
defined exposure time. The captured image is then transferred to the PC.

On models with general purpose I/Os (GPIO), you can query a voltage level at these inputs (TTL compatible).

Digital output (flash)

The digital outputs can be used in both freerun mode and trigger mode. You can synchronize the output level to the
exposure time or set it statically.

Models with optocoupler output allow control of a DC voltage applied to the output. This allows controlling a flash,
either directly or via a separate flash controller unit. Models with general purpose I/Os (GPIO) can output a voltage
at these outputs (TTL compatible).

Note

Please read the notes on I/O wiring for your camera model in the Electrical specifications chapter.

Note

The settings specified for the digital output will be reset when the camera is disconnected from the PC or the PC is
powered down.

2.8.2 Flash Timing (Trigger Mode)

When using the digital output for flash control, you can set the delay and the duration of the flash. The flash timing
can be adjusted manually or automatically by the camera driver.

Note

Sensor latency and delay times The sensor latency is due to a number of technical factors, including sensor type,
image geometry, pixels clock and, with CCD sensors, the exposure time. The latency is constant for a specific
combination of parameters.

Trigger delay , flash delay and flash duration are optional and can be set by software.

The following illustrations show a schematic view of the image capture sequence. The sensor exposure and
readout times and the transmission times depend on the camera model and the current parameter settings.

Automatic flash

If flash delay = 0 and flash duration = 0, the flash signal is automatically synchronized to the exposure time. The
automatic flash feature has the advantage that the flash is synchronized automatically if the settings for image
geometry or camera timing are changed. The disadvantage is that the flash signal is active slightly longer than the
exposure time. The flash duration with automatic flash is longer for rolling shutter sensors than for global shutter
sensors.

459

19

104

487

280

19

487

352 429

© 2013 Thorlabs GmbH48

DCx Cameras

Flash timing with global shutter sensor, automatic flash,
optional trigger delay

Flash timing with rolling shutter sensor, automatic flash,
optional trigger delay

Manual flash synchronization

If one of the flash delay or flash duration parameters is set to a value greater than 0, you can shift the flash signal
to any point in the exposure time or change its duration. In this case, the flash delay will be calculated exactly from
the start of the exposure time (after the sensor latency time). When manually synchronizing the flash signal to the
exposure time, you can use the is_IO() function to query the data you need.

The advantage of manual flash synchronization is that the flash can be precisely controlled based on the start of
exposure. This applies to both rolling and global shutter sensors. You can thus achieve a higher accuracy with the
manual flash synchronization than with the automatic flash feature.

The disadvantage is that the flash signal has to be resynchronized whenever any settings for image geometry or
camera timing change.

Note

With rolling shutter sensors, you can avoid the rolling shutter effect by selecting suitable delay and duration
settings (global flash function). Using is_IO() , you can query the appropriate values.

Note

The flash output is reset with the start of the next image capture. This also applies if you have set a longer flash
duration.

280

31

280

© 2013 Thorlabs GmbH

2 Camera Basics

49

Flash timing, user-defined flash duration

Flash timing, user-defined flash duration and delay,
optional trigger delay

2.8.3 Flash Timing (Freerun Mode)

Automatic flash

In freerun mode, the automatic flash feature works in the same way as in trigger mode. As a result, the flash output
is continuously or almost continuously active (see illustration below).

Flash timing in freerun mode with rolling shutter sensor, automatic flash

Manual flash synchronization

Note

It is recommended to synchronize the flash manually in freerun mode. This applies to both rolling and global shutter
sensors.

In freerun mode, the manual flash synchronization works in the same way as in trigger mode.

© 2013 Thorlabs GmbH50

DCx Cameras

Flash timing in freerun mode with global shutter sensor, manual flash

2.8.4 Serial Interface RS-232 (DC3240x only)

DC3240x cameras are equipped with a serial interface (RS-232). It provides functionality for communication with
peripheral devices (e.g. lighting controller, lens controller or the serial port of a PC). Before you can send data
through the camera's serial interface, one or more virtual COM ports have to be defined on the PC. Once defined,
they can be used for data communication with appropriate software just like any physical COM port.

To set up and use the serial interface, the "Additional functions" dialog box is provided in the uc480 Camera
Manager. For the serial interface specifications, please refer to the DC3240x Serial Interface Wiring (RS-232)
chapters.

71

495

© 2013 Thorlabs GmbH

2 Camera Basics

51

2.9 USB Interface

History and development

Structure and topology

USB 2.0 cabling and connection

USB 3.0 cabling

Data transmission and bandwidth

2.9.1 History and Development

The Universal Serial Bus (USB) is an interface which enables you to easily connect various devices to a PC. As
all data exchange is controlled by the PC, no additional interface controller is needed. Further advantages of USB
are:

The PC does not have to be shut down when connecting USB devices (hot plugging).

USB devices can be supplied with power from the PC.

High bandwidth for data transmission.

The USB standard was developed by a group of companies including Compaq, IBM, Intel, and Microsoft. Version
1.0 was presented in 1995. The slightly faster USB 1.1 standard followed in 1998.

At first, the USB interface was designed to connect peripheral devices such as printers, mice, or keyboards. With
the introduction of USB 2.0 in 2000, the transfer rate increased to 480 Mbit/s, making USB 2.0 suitable for
connecting devices with higher data volumes (such as mass storage devices, scanners, or cameras).

In 2008, with USB 3.0 a new version of the interface has been published, which is significantly faster than USB 2.0
(400 MByte/s).

2.9.2 Structure and Topology

USB uses a tree topology and is host-controlled. That means that a PC with host functionality is mandatory for
using USB. Therefore, it is not possible to directly connect two USB devices (with the exception of USB on-the-go
compliant devices). Neither is it possible to connect a camera to a PDA device.

Theoretically, 127 devices can be connected to a host controller. Using external hubs or repeaters, even more
devices can be connected, and from a greater distance. Provided that a maximum of 5 hubs/repeaters may be
daisy-chained, USB devices can be connected in up to seven levels.

USB topology

Note

The maximum bandwidth of 480 Mbit/s per USB 2.0 host or 400 MByte/s per USB 3.0 host cannot be exceeded.
Therefore, the maximum possible frame rate will be reduced if image data from multiple USB cameras is
transferred simultaneously.

The available bandwidth might also be decreased when you use hubs or repeaters. You can reduce the bandwidth

51

51

52

52

53

© 2013 Thorlabs GmbH52

DCx Cameras

required for each camera by lowering the frame rate or the image size.

2.9.3 USB 2.0 Cabling and Connectors

In order to comply with the specifications, the maximum length of USB 2.0 cables is limited to 5 m. Longer cables
may be connected if you use high-quality material. The USB bus provides power supply with 5 V and 500 mA max.
Many USB devices use the bus power and do not need external power supply (bus-powered devices).

Cable design

The following illustration shows the basic design of a shielded USB cable:

D+/D-: data transfer

+5 V/GND: power supply

Basic design of a USB cable

Connector types

On the PC side, USB 2.0 cables are equipped with a standard A type plug (four pins) and on the device side either
with a standard B plug (four pins) or a mini-B plug (five pins).

2.9.4 USB 3.0 Cabling and Connectors

In order to comply with the specifications, the maximum length of USB 3.0 cables is limited to 3-8 m. With the use
of repeaters cable lengths up to 20 m are possible. With signal conversion into optical signals cable lengths up to
100 m are possible. The USB bus provides power supply with 5 V and 900 mA max.

Cable design

The following illustration shows the basic design of a shielded USB cable:

SSTX+/-: SuperSpeed Transmit (data transfer from host to the device)

SSRX+/-: SuperSpeed Receive (data ransfer from device to the host)

D+/D-: data transfer (USB 2.0)

+5 V/GND: power supply

Basic design of a USB 3.0 cable

Connector types

On the PC side, USB 3.0 cables are equipped with a standard A type plug (8 pins) and on the device side either
with a standard B plug or a micro-B plug.

© 2013 Thorlabs GmbH

2 Camera Basics

53

USB 3.0 cable standard A
USB 3.0 cable standard B

USB 3.0 cable micro B

While a USB 3.0 standard A plug and a USB 2.0 port can be used together (with the restriction that only USB 2.0
speed is possible), the standard B and micro B plug are no longer compatible with USB 2.0 ports.

2.9.5 Data Transmission and Bandwidth

USB 2.0

The USB 2.0 standard specifies an overall bandwidth of 480 Mbit/s shared between different transmission modes.
DCx Cameras use the USB 2.0 bulk mode for transmitting images. This mode uses error correction to ensure
correct delivery of the image data, but does not guarantee a fixed bandwidth. To ensure error-free communication
with all connected devices at all times, the maximum bandwidth for payload data is limited to 416 Mbit/s.

Theoretically, up to 50 MByte/s of data can be transmitted in this mode, but in practice, this value is hardly ever
reached. A high-performance desktop PC can transmit about 40 MByte/s, most notebooks or embedded PC
systems even less than that.

The overall bandwidth can be increased by the use of USB 2.0 expansion cards. These cards are available for the
PCI and PCIe buses and have their own host controller chip.

Note on hardware selection

To achieve optimum USB bandwidth, it is important to use a powerful mainboard chipset. The mainboard chipsets
from e.g. Intel® or NVIDIA® provide very good results.

Note on image content and bandwidth usage

For USB cameras, you can use a white test image to check the camera's maximum load on the USB bus. Due
to the transmission process, completely white camera images require a somewhat more bandwidth on the USB bus
than completely black images.

USB 3.0

Compared to USB 2.0, USB 3.0 offers a tenfold increased bandwidth of 5 Gbit/s, i.e. images can be transmitted
with a bandwidth of 400 Mbytes/s.

110

© 2013 Thorlabs GmbH54

DCx Cameras

3 Operation
This chapter explains how to connect the DCx camera and how to use the applications contained in the uc480
software package.

Quick start

Installation and connection

Installed uc480 programs

o uc480 Camera Manager : The central tool for managing all connected DCx Cameras.

o uc480 Viewer : A comprehensive viewer for exploring the camera functionality.

o uc480 Player : A small program for playing AVI videos captured with the uc480 Viewer.

o uc480 Hotpixel Editor : A tool to edit the sensor hot pixel list stored in the camera.

3.1 uc480 Quick Start
This chapter show how to quickly get started with your DCx camera. You will learn how easy it is to connect the
camera and explore important functions. For further steps of integrating the DCx camera into your own applications
please also see the First steps to uc480 programming chapter.

Connect the camera

Install the latest version of uc480 software. Then connect the DCx camera with the PC. USB cameras
are automatically detected as new hardware under Windows. Check the status LEDs on your camera
to see if the camera has been correctly identified.

See also:

Installation and connection

Troubleshooting

Connection - Status LED

Configure the camera

USB DCx Cameras are ready for use right out of the box. You can assign a unique ID to your camera
with the uc480 Camera Manager.

See also:

uc480 Camera Manager

Assigning a camera ID in the camera manager

Firmware and camera start

Capture images

The uc480 software package includes many sample programs that you can use to try out the extensive
functionality of your DCx camera. We recommend starting off with the uc480 Viewer application. To
run the application, simply double-click the corresponding icon on your Windows desktop.

When you select "uc480 > Initialize" on the menu bar, the connected DCx camera will immediately start
capturing live images. The status bar at the bottom displays the frame rate and other important
information.

If you are using a high-resolution camera, you can click "View > Render mode" on the menu bar to
adjust the size of the rendered image to the application window.

See also:

uc480 Viewer

Camera basics: Operating modes

Customize the key camera properties

Select "uc480 > Properties…" on the menu bar to open the dialog box for modifying the camera
properties.

The "Camera" tab provides all the parameters for adjusting the camera's speed. You can increase the
pixel clock to run the camera at a higher frame rate. Reduce the pixel clock if transmission errors occur
too often. When you enable "Optimum", the optimum pixel clock will be set automatically.

On the "Image" tab, you find various sensor gain controllers. Use the "Master gain" controller to
increase image brightness if no longer exposure time setting is possible. Switch to the "AES/AGC" tab
to enable the Auto Exposure Shutter (AES) and Auto Gain Control (AGC) features.

54

56

67

75

119

123

127

56

499

61 501

67

71

46

75

17

© 2013 Thorlabs GmbH

3 Operation

55

Tip: Select a low sensor gain to minimize visible noise.

If you are using a color camera, you should activate sensor color correction on the "Color" tab in order
to achieve rich vibrant colors for on-screen display. To adapt a color camera to the ambient light
conditions, it is essential to carry out Auto White Balance (AWB). Aim the camera at a surface of a
uniform gray color, then enable the "Image white balance: Enable" and "Run once" check boxes on the
"AWB" tab.

See also:

uc480 Viewer: Camera properties

Camera basics: Camera parameters

Activate trigger and flash modes

DCx Cameras provide the possibility to trigger the image capture and to have the flash controlled by
the camera. To switch the camera to trigger mode, go to the camera properties as described above,
select the "Trigger" tab and enable the desired mode. To trigger on "falling edges" or "rising edges", a
digital signal has to be applied to the camera. When you are finished with the trigger settings, select
"uc480 > Trigger mode…" on the menu bar to start the triggered image capture.

If you have connected the digital output on your DCx camera to a flash controller, you can configure
the flash function on "Input/Output" tab. Enable "Flash high active" and "Global exposure window". This
way, the DCx camera automatically activates the flash during the exposure time.

See also:

uc480 Viewer: Camera properties

Camera basics: Digital input/output

Specifications: Electrical specifications

Save the camera settings and images

With uc480 Viewer, saving single frames or videos is very easy to do. Just choose the relevant option
on the "File" menu. If you have recorded AVI videos, you can play them using the supplied uc480
Player.

When you have made specific settings for a camera and want to save them so that you can use them
again the next time you start the program – or any other uc480 program - select the "Save parameters"
function to save all the camera's properties to an ini file or to the camera memory (parameter set 1/2).
To load the saved settings, select the "Load parameters" option.

See also:

uc480 Viewer: Record dialog

uc480 Player

92

44

92

47

487

84

119

© 2013 Thorlabs GmbH56

DCx Cameras

3.2 Installation and Connection

System requirements

Installing uc480 software under Windows

Installing uc480 software under Linux

Connecting a USB DCx camera

3.2.1 System Requirements

For operating the DCx cameras, the following system requirements must be met:

Minimum*1 Recommended

CPU speed 600 MHz 2 x 2.4 GHz

Memory (RAM) 256 MB 2048 MByte

USB host controller USB 2.0 high speed (480 Mbps)

USB 3.0 (4000 Mbps) for DC3240x
cameras

USB 2.0 high speed (480 Mbps)

USB 3.0 (4000 Mbps) for DC3240x cameras

Intel® or NVIDIA® nForce mainboard chipset

Graphics card Onboard graphics chip AGP/PCIe graphics card

Latest version of Microsoft DirectX Runtime
9.0c

Operating system Windows 7 32 or 64 bit

Windows XP 32 bit (Service Pack 2)

Linux (Kernel 2.6)

Windows 7 32 or 64 bit

Windows Vista 32 or 64 bit (Service Pack 1)
*3

Windows XP 32 bit (Service Pack 3)

Linux (Kernel 2.6)

*1 With the minimum system requirements the camera performance may be limited.

*3 DCC3240x USB 3.0 cameras are not supported under Windows Vista.

USB interface

Onboard USB 2.0 ports usually provide significantly better performance than PCI and PCMCIA USB adapters.

Current generation CPUs with energy saving technologies can cause bandwidth problems on the USB bus. See
section PCs with energy saving CPU technology for hints and possible solutions.

Large multi camera systems

Connecting a large number of cameras to a single PC may require a large working memory (RAM). This is
especially the case when many cameras with high sensor resolution are used.

If you want to set up such a system we recommend to use PCs with 64 bit operating systems and more than 4 GB
of RAM.

Note

For DCx color cameras, the color conversion is done by software in the PC. When you use a color camera with a
high frame rate, the conversion might lead to a high CPU load. Depending on the PC hardware used you might not
be able to reach the camera's maximum frame rate.

Direct3D graphics functions

The uc480 driver can use Direct3D to display the camera image with overlay information (Microsoft DirectX
Runtime had to be installed). On Windows systems, you can use the supplied "DXDiag" diagnostic tool to check
whether your graphics card supports Direct3D functions. To start the diagnostic tool, click "Run…" on the Windows
start menu (shortcut: Windows+R) and enter "DXDiag" in the input box.

On the "Display" page of the diagnostic tool, click the button for testing the Direct3D functions.

OpenGL graphics functions

For OpenGL version 1.4 or higher must be installed. The OpenGL graphics functions do not work with QT under
Linux.

Software Requirements under Linux

56

58

61

61

500

© 2013 Thorlabs GmbH

3 Operation

57

For operating the DCx camera under Linux the following components must be installed:

Component Version

Linux-Kernel 2.6.9 up to 2.6.24

The standard C library libc/glibc 2.0 or higher

GNU Compiler Collection gcc 3.4 or higher

POSIX Thread Library
(POSIX Threads Enabled libc)

-

bash or sh shell

(for running the installation script)

-

Qt (for compiling the demo program) -

© 2013 Thorlabs GmbH58

DCx Cameras

3.2.2 DCx Driver Compatibility

Attention

Support of older DCC1545M cameras by driver versions 3.10 and higher

From driver version 3.10 onwards, only USB board revision 2.0 or higher are supported. To operate a camera with an
earlier USB board revision, you will need the uc480 driver version 2.40. Please contact Thorlabs

The LED on the back of the camera housing also indicates the USB board version (see DCx Status LED). In
addition, the uc480 Camera Manager version 3.10 or higher provides information about the compatibility (see
Camera Manager). An incompatible camera will be displayed as free and not available.

3.2.3 Installing the uc480 Software under Windows

Attention

1. You need administrator privileges to install the software.

2. Please install the software prior to connect a DCx Cameras!

The software for DCx Cameras is delivered on a CD. Alternatively, or if the CD is lost, the software can be
downloaded from Thorlabs' website. Please insert the delivered with the DCx Cameras CD to the drive of your PC
and start the software installation:

518

501

67

http://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=DCx
http://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=DCx

© 2013 Thorlabs GmbH

3 Operation

59

Click 'Next >' to continue.

Click 'I accept...' if you do so, then 'Next >' to continue.

Click 'Next >' to continue.

© 2013 Thorlabs GmbH60

DCx Cameras

Click 'Install' to start the software installation.

Click 'Install' to allow the installation of the USB driver software. The following window appears:

This is a normal of the DirectShow driver, included in the installation package, because no camera is connected
yet. Please click OK or Cancel to resume software installation.

© 2013 Thorlabs GmbH

3 Operation

61

Click 'Finish'. The uc480 camera software is now installed and ready for use. For detailed description of the
installed uc480 software components please see section Installed uc480 programs

3.2.4 Installing the uc480 Software under Linux

The installation of the uc480 software on Linux systems is described in the Readme.txt file contained in the
uc480 driver download (tab "Drivers") for Linux.

3.2.5 Connecting a DCx Camera

Please install the software first as described in the Installing the uc480 software section. Connect the DCx
camera to the PC, using the USB cable. The camera will be recognized automatically and the necessary driver
software is being installed:

When the camera has been correctly installed, the LED on the back of the camera lights up green.

Note

The first time you connect a USB DCx camera to a USB port under Windows, two driver files will be registered. The
first file (uc480 boot) contains the generic driver, the second file the model-specific driver.

The model will be immediately recognized whenever you connect the camera to this port again. If you use a
different port, the registration will be repeated. Under Windows the camera will show up in the uc480 Camera
Manager's camera list.

67

58

67

http://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=DCx
http://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=DCx
http://www.thorlabs.com/software_pages/ViewSoftwarePage.cfm?Code=DCx

© 2013 Thorlabs GmbH62

DCx Cameras

The DCx Cameras can be connected to a USB port either directly or via hubs and repeaters. A wide range of
different hubs and repeaters are available commercially. The USB 2.0 hubs being used must be "full powered"
hubs that are able to provide 500 mA per USB port. "Low Powered" hubs, in comparison, only supply 100 mA per
port, which is not sufficient for DCx Cameras.

Note

To use maximum bandwidth, we recommend connecting the cameras directly to the USB ports on the mainboard.
Many USB ports on PCI/PCIe cards and the USB ports on the front of the PC often supply lower bandwidth.

Attention

USB cables with non-standard connectors must be connected to the camera first and then to the PC. Otherwise the
camera might not be recognized correctly.

© 2013 Thorlabs GmbH

3 Operation

63

3.3 Application Notes by Camera Model

Cameras with CMOS sensors

DCC1240x / DCC3240x Application Notes

DCC1545M Application Note

DCC1645C Application Notes

Cameras with CCD sensors

DC223x Application Notes

DC224x Application Notes

3.3.1 DCC1240x / DCC3240x Application Notes

For the technical specifications of this model go to: Camera and sensor data > DCC1240x / DCC3240x .

Shutter modes

The following table displays the four shutter modes and their advantages and disadvantages in different situations:

Global shutter
(default)

Global shutter
(alternative timing)

Rolling shutter Rolling shutter
(global start)

Black level constancy - + ++ ++

Capturing of moving
objects

++ + - +

Hotpixels - - + +

Image quality with high gain - + ++ +

The rolling shutter mode offers a better signal/noise ratio and a more consistent black level compared to the
global shutter mode.

If the sensor is used in global shutter mode at a low pixel clock frequency and a high gain, the bottom pixel rows
might become brighter for technical reasons. Color distortion will occur for the color sensor with active white
balance. In this case, use a higher pixel clock frequency, less gain or the rolling shutter mode.

The "Global shutter (alternative timing)" mode offers a more consistent black level compared to the global
shutter mode. This mode should not be used with a frame rate below 2 fps. This mode is also not suitable for
bright, moving image contents in combination with long exposure times.

The rolling shutter mode with global start is suitable for capturing moving objects with flash.

When using flash in rolling shutter mode make sure to set the flash duration accordingly ((1/maxFramerate) +
exposure) or that the global time window is available by a long exposure time (2 * (1/MaxFramerate) +
FlashDuration). For flashing into this time window use the flash delay (1/MaxFramerate).

The hardware sensor gamma curve is piecewise linear with three sections. This allows evaluating four times
more details per pixel for lower gray level values and in 8 bit per pixel mode in dark image areas.

In global shutter mode the shutter efficiency of 1:3000 have a negative impact with bright conditions and the
usage of exposure times under 100 µs. In this case, set the pixel clock to the maximum possible value and close
the aperture a little bit. Also enabling the Log mode with low values achieve huge improvements.

Black level

The black level can also be set to negative values. Therefore, the factory setting of the offset control is nearly in
the middle of the range.

Use of the gain functions can lead to slight fluctuations of the black level. In global shutter mode the black level
can also vary slightly.

In global shutter mode the black level can also vary slightly between two image captures.

When enabling the rolling or global shutter mode the black level is set to a fixed factory-provided value.
Therefore, the black level can individually adjusted after switching the shutter mode.

Depending on the internal black level and shutter mode the offset control shows no additional cumulative effect
at the top.

The factory setting of the offset control are so selected that the black level is always slightly increased to avoid
losing image information by cutting underneath the origin. For linearity measurements the black level must be

63

66

66

66

66

461

115

© 2013 Thorlabs GmbH64

DCx Cameras

adjusted to the origin with the offset control before the measurement is done.

Color sensor

The color sensor's black level cannot be adjusted manually, as the RGB gains are downstreamed and an
adjustment would cause color errors.

Automatic black level correction is always enabled.

The RGB gains work analog.

The fast line scan mode is disabled.

NIR sensor

It is recommended to use a IR-coated and IR-corrected high-quality lens, especially for non-monochromatic light.

In the high IR wavelength range picture blur can occur with strong contrasts. This reduced MTF (modulation
transfer function) is a characteristic of the sensor pixels.

The master gain of the NIR sensor is adapted in comparison to the monochrome sensor. If both sensors are
compared directly, the gain of the NIR sensor must be set to the double factor of the monochrome sensor. This
can be done via the master gain or the gain boost.

In the Log mode the guaranteed dynamic range of the NIR sensor is reached with a gain value of at least 1. For
the monochrome sensor you need at least a value of 3. With very short exposure times, lower values can result
in even higher dynamics.

Gain, pixel clock

Master gain uses a combination of coarsely scaled analog gain factors and finer digital scaling. To achieve
optimum homogeneity of the gray level, use only the gain factors 0, 33, 66, and 100.

The gain boost has the factor 2. When using the master gain a maximum factor of 8 is possible caused by the
sensor.

For global shutter mode the pixel clock should be set to the maximum possible value to increase the image
quality.

In the 10 bit mode the usage of the digital gain intermediate level produces missing pixel values as the sensor
works internally with maximally 10 bit.

Hot pixel

In the rolling shutter mode, there are less hot pixels, as the pixel charges are not buffered in the sensor.

The sensor corrects hot pixels dynamically. Neighboured hot pixels in diagonal direction cannot be corrected
effectively. These positions are covered by the factory-made hot pixel correction and are eliminated by the
software hot pixel correction. Therefore, the hardware hot pixel correction is a prerequisite and should not be
deactivated.

On the color sensor the hot pixel correction works with the appropriate color neighbours.

In the global shutter mode, increased hot pixels can become visible in the lower image area with log exposure
time, a high gain and disabled hot pixel correction.

Both hot pixel corrections should be disabled if extremely fine structures are captured with a high-quality lenses.

For the measurements of noise characteristics both hot pixel corrections should be disabled.

The activation of the factory-made hot pixel correction reduces the frame rate slightly. Here, the desired frame
rate has to set after the activation or deactivation of the factory-made hot pixel correction.

Increased hot pixels can occur In the entire image border area.

Binning

2x binning makes the image brighter by a factor of about two. It also reduces image noise.

Binning does not result in a higher frame rate. Using binning allows higher pixel clock frequencies for USB DCx
cameras with the USB 2.0 and GigE interface. To achieve the maximum frame rate, activate first the binning and
then change the maximum pixel clock frequency.

When using binning the frame is slightly shifted horizontally.

Binning can only be enabled for both horizontal and vertical pixels. For this reason, the parameters of the
is_SetBinning() function have to be passed together (IS_BINNING_2X_VERTICAL |
IS_BINNING_2X_HORIZONTAL) to enable binning.

Scaling, AOI

33

310

© 2013 Thorlabs GmbH

3 Operation

65

The digital scaling functions result in a higher possible frame rate. The maximum frame rate is increased
approximately proportionally to the scaling factor. When using the scaling functions with USB 2.0 and GigE
cameras, you can set higher pixel clock frequencies. To achieve the maximum frame rate, select first the scaling
factor and then the maximum pixel clock frequency.

For improved image quality without undersampling artifacts, the digital scaling feature permanently uses an anti-
aliasing filter.

On color sensors the scaler works in consideration the color information.

Reducing the horizontal resolution does not result in a higher frame rate.

The available step widths for the position and size of image AOIs depend on the sensor. The values defining the
position and size of an AOI have to be integer multiples of the allowed step widths. For detailed information on
the AOI grid see the DCC1240x / DCC3240x chapter.

Multi AOI

When the Multi AOI function is enabled, no changes can be made to the image size settings (e.g. binning,
subsampling, scaling).

If sensor hotpixel correction and Multi AOI are enabled, the sensor displays a four pixel wide black line between
the AOIs.

Line scan mode

Fast line scan mode: The exposure time is fixed to the readout time of one sensor line. Exposure time cannot
be changed in this line scan mode.

Fast line scan mode: The time stamp is generated for the complete image.

Fast line scan mode: There is a time gap between two frames with the line scan information. This corresponds to
the duration of 15 lines at a frame rate set to maximum.

In the fast line scan mode color images are not possible as Bayer color sensors needs at least two
neighboring lines for color calculating. Therefore, only monochrome models support the line scan mode.

Log mode

The Log mode shows visible effect only for short exposure times (< 5 ms)

In global shutter mode the Log mode can help to increase the shutter efficiency for extremely short exposure
time (< 100 µ s).

To find the right operating point of the Log mode use the following procedure:

1. Set the Log mode gain to the minimum value.

2. Find the operating point via the Log mode value. The higher the value, the more bright image areas are
damped and more details become visible.

3. Set the image as bright as possible via the Log mode gain. A typical value is 2 or 3 for monochrome sensors
and 0 or 1 for NIR sensors.
The line view in the uc480 Viewer is very helpful for this.

The master gain is disabled in Log mode.

Anti blooming

Activation: With exposure times over 10 ms and no use of gain or gain boost it can occur that bright image areas
do not reach saturation and so no white level which is caused by the sensor. A visible, firm pattern is formed in
bright image areas. For color sensors with enabled white balancing bright image areas gets purple. In this case,
disable the anti blooming mode (see Shutter: Log mode) or increase the master gain from 1x to 1.5x.

The anti blooming mode should not be enabled for short exposure times (< 5 ms). Depending on the shutter
mode a "Black Sun" effect or overexposure occurs.

Micro lenses

The sensor has non-removable micro lenses on each pixel. These micro lenses focus the incoming light for the
subjacent smaller photodiode. This lens has a directive efficiency.

To the corners of the active image area the micro lenses are slightly shifted to the photodiode. So the
unavoidable non-vertical light incidence of C mount lenses is compensated. The shift is constant from the center
to the corner and has a maximum of 12 degrees. When using a telecentric lens or parallel light incidence the
shift must be considered as little shading effects may occur.

461

33

26

86

116

© 2013 Thorlabs GmbH66

DCx Cameras

3.3.2 DCC1545M Application Notes

For the technical specifications of this model go to: Camera and sensor data > DCC1545M .

Sensor

Sensor speed does not increase for AOI width <240 pixels.

Extreme overexposure shifts the black level. Please deactivate the Auto offset function in this case.

At very long exposure times and minimum gain, the white level may not be reached. The gain should be
increased by one step in this case.

Monochrome version only: The sensor internally works like the color version. This might lead to artifacts when
subsampling is used.

The brightness of the first and last line might deviate due to the sensor.

Gain values between 59 and 99 may lead to image inhomogeneity.

When using very narrow AOIs, the sensor may not be able to calculate the correct black level. Use manual black
level offset when problems with the black level occur.

Calibration

Cameras with a date of manufacture after Dec. 9, 2008: The offset control has been calibrated internally. The
calibration corrects offset errors when gain is used. In calibrated cameras, automatic black level correction is
disabled by default. The calibration can only be used with uc480 driver version 3.31 or higher.

Cameras with a date of manufacture before Dec. 9, 2008: If manual offset control is used, fixed pattern noise
and horizontal lines may become visible. High gain values may shift the black level and therefore should be
avoided.
Offset increases the black level every 7th step. The steps in-between change the appearance of fixed pattern
noise.

3.3.3 DCC1645C Application Notes

For the technical specifications of this model go to: Camera and sensor data > DCC1645C .

Sensor

At very long exposure times and minimum gain, the white level may not be reached. The gain should be
increased by one step in this case.

The RGB gain controls have no effect for values >90.

3.3.4 DCU223x Application Notes

For the technical specifications of this model go to: Camera and sensor data > DCU223x .

Sensor

Long exposure times will increase the number of hotpixels.

High temperatures will increase the black level of individual pixels.

3.3.5 DCU224x Application Notes

For the technical specifications of this model go to: Camera and sensor data > DCU224x .

Sensor

Long exposure times will increase the number of hotpixels.

High temperatures will increase the black level of individual pixels.

When vertical 4x binning is activated, the minimum image width increases to 640 pixels.

464

95

71

71

466

468

470

© 2013 Thorlabs GmbH

3 Operation

67

3.4 Installed uc480 Programs

uc480 Camera Manager : The central tool for managing all connected DCx cameras.

uc480 Viewer : A comprehensive viewer for exploring the camera functionality.

uc480 Player : A small program for playing AVI videos captured with the uc480 Viewer.

uc480 Hotpixel Editor : A tool to edit the sensor hot pixel list stored in the camera.

3.4.1 uc480 Camera Manager

The uc480 Camera Manager is the central tool for managing all DCx cameras. It displays information on the
connected USB DCx Cameras and provides options for configuring them.

On Windows systems the uc480 Camera Manager can be accessed as follows:

Start > Programs >uc480 Camera Manager

Program icon on the desktop or Quick Launch toolbar

Start > Settings > Control Panel > uc480 Camera Manager

Click in the figure to get help on the functions.

Camera list
The camera list displays information on the connected DCx Cameras.

Attention

Under Windows XP (64 bit) and Windows Vista DC3240x Cameras are displayed in the uc480 Camera Manager,
but they cannot be opened, because they are supported by Windows 7 and Windows XP (32 bit) only

Control center
In the control center , you can access the configuration and display detailed information on the connected DCx
Cameras.

67

75

119

123

68

68

© 2013 Thorlabs GmbH68

DCx Cameras

In the drop down box, you can choose the language for the uc480 Camera Manager. This
setting is saved and remains effective even after you close and reopen the program.
For proper display of Asian languages on Windows systems, the support package for East Asian languages has
to be installed on your system (in "Control Panel > Regional and Language Options").

Click to close the application; any settings you have made are saved.

The status box at the bottom indicates the current status of the selected camera. If it is available, the status
message is shown in black. Otherwise, the status message is shown in red.
If an error has occurred in a camera, a black exclamation mark on a yellow background is shown next the
camera. The status box then indicates the cause of the error and suggests remedies.

3.4.1.1 Camera List

When a camera is activated (switched on or connected to the PC), it appears in the camera list of the uc480
Camera Manager after a few seconds.

The data shown in the camera list can be sorted in ascending or descending order by left-clicking on the respective
column header.

Free/Avail.
Free: indicates whether a camera is currently in use.
Avail. (Available): indicates whether a camera can be opened by this computer with the current setup (computer
and camera).
Cameras shown with a red x are currently in use (Free = No) and are not available (Avail. = No).
Cameras shown with an exclamation mark are not in use, but are currently unavailable for various reasons, such
as:

o The camera is not compatible with the driver. Please update the uc480 driver.

o The driver has not properly detected (initialized) the camera. Please disconnect the camera from the PC and
then reconnect it.

o The camera is currently being removed from the Manager.

o The camera reports that it is "Not operational".

Type
This column indicates the USB camera type.

Cam.ID
The camera ID assigned by the user.

Dev.ID
Unique device identifier sequentially assigned by the system. DCx cameras are assigned device IDs from 1
upwards. After deactivating a DCx camera (switching it off or disconnecting it from the network), the device ID is
no longer valid and can be assigned again by the system.

Model
Model name of the camera

SerNo.
Serial number of the camera.

3.4.1.2 Control Center

Expert mode

When you select the check box, the uc480 Camera Manager additionally displays the
Parameters box on the right. There you will find detailed information on the DCx camera selected in the
camera list .

Click in the figure to get help on the functions.

71

74

68

© 2013 Thorlabs GmbH

3 Operation

69

Automatic parameter refresh

If you select the check box, the data shown in the tree structure is updated
periodically. If the option is disabled, the data in the tree structure is only updated when a different camera is
selected.

All other "Control Center" buttons are described in detail in the following sections:

General information

Camera information

Creating a support file

Additional functions (COM port)

70

71

71

71

© 2013 Thorlabs GmbH70

DCx Cameras

3.4.1.3 General Information

This dialog box provides information on the installed uc480 drivers and the available USB controllers and network
adapters.

uc480 drivers
This list shows the location and version of the uc480 driver files installed on your system.

3rd party drivers
This list shows the location and version of the uc480 interface files that have been installed on your system for
third-party software.

USB controller and network adapters
All USB controllers and network adapters that are available in your system are shown in a tree structure.

© 2013 Thorlabs GmbH

3 Operation

71

3.4.1.4 Camera Information

In the "Camera information" dialog box, you can assign a unique ID to the selected camera and write to the user
area of the EEPROM. The data you enter is retained in the camera memory even when the camera is disconnected
from the PC or power supply.

Camera ID
The camera ID identifies a camera in multi-camera operation. The ID can range from 1 to 254. The default value
for the camera ID is 1. The same ID can be assigned to multiple cameras. You do not have to assign sequential
ID numbers to all connected cameras.

User EEPROM (max. 64 characters)
Every uc480 has a 64-byte user area in its EEPROM (Electrically Erasable and Programmable Read Only
Memory) to which you can write text of your choice.

The "Camera information" dialog box displays two additional boxes that are for your information only and cannot be
edited:

Manufacturer (e.g.OEMINC)

Date of QC (date of final camera quality test)

Notes

1. Setting a camera ID and writing to the EEPROM is possible only, if the camera is marked "Free" and "Available"
in the Camera Manager (see also Camera list).

2. If software accesses cameras through the uc480 DirectShow interface, the camera IDs must be in a range from
1 to 24.

3. If software accesses cameras through the uc480 Cognex VisionPro interface, the camera IDs must be assigned
consecutively beginning with 1.

3.4.1.5 Creating a Support File

A uc480 support file is a binary file with the extension .bin. The file contains camera and driver details that are
required for diagnostics by our Technical Support team. No personal computer data or user data is stored in this
file.

The button opens the "Save as" dialog box, where you can save the displayed camera
information and additional driver information to a file.

3.4.1.6 Additional Functions

CPU idle states

Windows only: Processor operating states (idle states/C-states)
Modern processors have various operating states, so-called C-states, that are characterized by different power
requirements. When the operating system selects an operating state with low power consumption (unequal C0),
the USB transmission efficiency may be affected (see also is_Configuration() and section
troubleshooting).

Camera parameters when camera is opened

Here, you can set whether to apply the parameters stored on the camera automatically when opening the camera.
You must first store the camera parameters on the camera using the is_ParameterSet() function or via the
corresponding function in the uc480 Viewer.

68

518

183

500

292

© 2013 Thorlabs GmbH72

DCx Cameras

This setting applies to all connected cameras. If no parameters are stored on the camera, the standard parameters
of this camera model are applied (see also is_Configuration()).

Boot boost

This mode is not related to DCx Cameras.

Bulk Transfer Size

Via "Bulk Transfer Size" the behavior of the USB sub-system can be set.

Warning

Contact our technical support before changing the value under "Bulk Transfer Size".

COM Ports

The "Additional functions" dialog box allows installing virtual COM ports for communication through the serial
interface of a DCC3240x camera. The following sections show you how to set up and use the serial interface .

Note

This feature is only available for DCC3240x cameras.

You need administrator privileges to install a virtual COM port.

The selected in the uc480 Camera Manager DCC3240x camera has to be marked "Free" and "Available".

Setting up the serial interface on the DCC3240x camera

Before using the serial interface on the camera, one or more virtual COM ports have to be installed on the PC.
Most systems support up to 255 COM ports; COM1 to COM8 are often assigned operating system functions by
default. You can check the current port assignment in the Device Manager on your computer. Some older systems
may not have more than eight ports; in that case you will need to assign the camera to one of these ports.

COM port
In the drop down box, select the number of the port you want to install (default: 100). COM ports in use are
marked "(used)" in the list.

Click this button to install the selected virtual COM port.
During the first installation of a virtual COM port, an additional broadcast port with number 255 is installed. Data
sent to this port will be forwarded to all paired cameras.
You can install any number of virtual COM ports on a single system.

183

518

495

© 2013 Thorlabs GmbH

3 Operation

73

With this button, you can release a COM port that is marked "used." If the port number has been saved in that
camera, it will be deleted in the camera, too. To release a COM port, select it in the drop down box and then click
this button.

Click this button to assign the selected port number to the camera. The port number is saved in the camera's
non-volatile memory and retained even when the camera is switched off. You can look up the assigned port
number in the Camera Manager's expert mode. A COM port number can also be saved in a camera without a
virtual COM port installed on the PC.

Note

If you want to control more than one DCC3240x camera from a PC, each camera should be assigned a unique port
number. If multiple cameras are assigned the same port number, only the port of the first camera that is opened
will be used.

To send data via the serial interfaces of multiple cameras, you can use the broadcast port with number 255. Before
connecting to the broadcast port, ensure that all the cameras that are to receive the broadcast have been opened.

Testing the serial interface on the DCC3240x camera

Note

To avoid transmission errors, please ensure that both the camera and the receiving end use the same
communication parameters (baud rate, data bits, stop bits, parity). Further information on the communication
parameters is provided in the Serial interface DCC3240x chapter.

Clicking this button opens a dialog box for transferring data through the COM port. The dialog box is provided as
the uc480ComportDemo.exe sample program together with the C++ source code and is included in the uc480
SDK.
This program allows sending ASCII characters to the COM port assigned to a camera. The characters are output
unchanged on the camera's serial port. To check the proper functionality, you can connect a PC to the camera's
serial port and read the transmitted characters on the PC's COM port.

Baud
In this drop down box, you can change the data transfer rate of the serial interface.

Append
This drop down box allows appending the special characters "CR" (Carriage Return) and "LF" (Line Feed) to the
ASCII text you want to transmit. Some devices with serial interface require ASCII strings to be terminated with
CR/LF.

Send file

495

© 2013 Thorlabs GmbH74

DCx Cameras

Using these functions, you can send a file in either direction (output on the camera's virtual COM port or output
on the PC's COM port).

Note

Since the sample program has to open the camera, please make sure the selected camera is not used by other
applications at the same time.

3.4.1.7 Parameters

This box displays the parameters of the camera you have selected in the camera list. The parameters box is only
shown when Expert mode is active.

The parameters are organized in a tree structure. Only the information that applies to the selected camera is
shown. The data displayed in the camera list is not repeated in the "Parameters" box. The data shown in the tree
structure cannot be changed.

Device

o Sensor ID

USB

o Hub
Indicates which hub and port a USB camera is connected to. In addition, the full path through all hubs to the
USB controller on the computer is displayed.

o Controller
Indicates the USB controller to which the camera is connected.

Local driver

o Indicates the USB version of the camera driver

68

© 2013 Thorlabs GmbH

3 Operation

75

3.4.2 uc480 Viewer

The uc480 Viewer application demonstrates the functionality and performance of the DCx Cameras. The
application is part of the uc480 software package.

In uc480 Viewer, you can access all important camera settings and functions of the uc480 programming library.
Apart from controlling and configuring the camera, you can record images as AVI files and save them as BMP or
JPEG files.

uc480 Viewer can be accessed as follows:

Start > All Programs > uc480 > uc480 Viewer

Program icon on the desktop or Quick Launch toolbar

Click in the figure to get help on the functions.

Note

uc480 Viewer is currently only available for Windows operating systems. For Linux a version with reduced
functionality of uc480 Viewer is available named uc480 Demo.

Please note that uc480 Viewer does not guarantee completeness and operational reliability in all modes and all
computing environments. uc480 Viewer is intended solely for demonstrating the uc480 software library and camera
functionality.

© 2013 Thorlabs GmbH76

DCx Cameras

3.4.2.1 Start Dialog

When you start the application, the start dialog shown below appears by default. In this dialog you can:

choose a profile to adjust the camera parameters

start uc480 Viewer in expert mode

Profiles for camera settings

Profiles are a very quick and useful way to adjust the camera parameters to different common situations in image
capture. The profiles are independent of the DCx camera model you are currently using. When you choose a
profile, key camera parameters are configured for that specific situation to achieve optimum results. After installing
uc480 Viewer, the following profiles are available:

Optimal colors
Choose this profile to optimize the image quality of a color camera. Parameters such as exposure, white balance
and gain are set automatically. Color correction and gamma correction are enabled.

Monochrome
Choose this profile to optimize the image quality of a monochrome camera. Parameters such as exposure and
gain are set automatically. Gamma correction and edge enhancement are enabled.

Live video
Choose this profile to record a smooth video. The frame rate is set to the maximum value. For high-resolution
sensors, binning or subsampling is enabled to increase speed. Parameters such as exposure and gain are set
automatically.

User profile
This button displays the "Open" dialog box where you can load your own profiles.
For details on creating your own profiles, see the Creating profiles chapter.

No profile
uc480 Viewer starts with the default settings configured for this camera model. No profile is used.

Note

A selected profile is not automatically loaded when you restart the application. You need to choose a profile again
from the start dialog or Profiles menu .

In the File menu , you can choose if you want the start dialog displayed on program startup.

Start uc480 Viewer in expert mode

uc480 Viewer by default provides the basic icons and menus for operating the camera. If you select the "Start
uc480 Viewer in expert mode" check box, additional functions, toolbars and menus are available in uc480 Viewer.
This setting is recommended for advanced users.

See also:

Creating profiles

"Profiles" menu

Customizing uc480 Viewer

117

83

80

117

83

85

© 2013 Thorlabs GmbH

3 Operation

77

3.4.2.2 Toolbars

The toolbars in uc480 Viewer provide the tools described below. Which of these tools are available depends on the
mode you have selected (expert mode on/off).

Top toolbar

Open camera and start in live mode

Open camera

Close camera

Start/stop live video (freerun mode)

Snapshot in freerun mode

Start/stop continuous triggered capture

Snapshot in trigger mode

Open the dialog box for setting the camera parameters

Select AOI (Area of interest)

Delete selected AOI

Automatic brightness control (AES/AGC) on/off

Set reference area for automatic brightness control

Delete reference area for automatic brightness control

Auto white balance (AWB) on/off

Set reference area for auto white balance

Delete reference area for auto white balance

Measure sharpness in a defined AOI

Save image as bitmap

Open the dialog box for AVI recording

Open/close Histogram window

Open/close Horizontal Line View window

Open/close Vertical Line View window

Open/close Zoom window

76

79

79

17

19

92

34

106

108

84

86

87

© 2013 Thorlabs GmbH78

DCx Cameras

Left toolbar

Scale display to window size

Display at original size

Scale display down to half size

Scale display down to quarter size

Scale display up to double size

Show image at full screen size

Deactivate display

Draw freehand in image

Draw line in image

Measure distance in image

Draw rectangle in image

Draw circle in image

Add text to image

Choose colors for drawing functions

Clear all drawn elements

Show/hide time

© 2013 Thorlabs GmbH

3 Operation

79

3.4.2.3 Status Bar

1 Current cursor position in the Zoom/Pixel Peek window and color values at the cursor position

2 Defined color mode and image resolution

3 Counters

Frames: Transferred images

Display: Displayed images

Missed: Hardware trigger events missed. This counter increments each time a hardware trigger is
received in trigger mode, but the camera is not ready for image capture

Failed: Transmission errors

Recon.: This counter increments each time the open camera is removed and reconnected during
operation.

4 Status of the current image data transfer (OK/Error)

5 Current frame rate (fps) of the camera

3.4.2.4 Opening a Camera

Select the menu uc480 > Initialize or click the corresponding icon on the Toolbar to select (open) a
connected camera. If only one camera is available, this camera is selected automatically. If more than one camera
is connected, the "Select Camera" dialog box is displayed.

You can use multiple cameras simultaneously by opening multiple instances of uc480 Viewer. DCx cameras that
have already been opened or that have not been correctly configured are marked "No" in the "Available" column.

81 77

© 2013 Thorlabs GmbH80

DCx Cameras

3.4.2.5 Menus

Please choose a menu title:

File

Edit

View

uc480

Draw/Measure

Profiles

Help

3.4.2.5.1 File

The "File" menu contains functions for handling image, video and parameter files and for customizing uc480
Viewer.

Load image ... Load image from bitmap file (BMP)

Save image ... Save image as BMP, JPEG or PNG file.

You can save images with a bit depth of more than 8 bit in the PNG format.

Record video sequence ... Opens the Record dialog box

Load parameters Load parameters from an .ini file or from one of the camera's parameter sets

Save parameters Save parameters to an .ini file or to one of the camera's internal parameter sets

Language Select a language for the program. When you change the language, you need
to restart uc480 Viewer to apply the new setting.

Mode Select the uc480 Viewer user mode:

Normal: The uc480 Viewer user interface shows the most important
functions. Some advanced options are hidden.

Expert: The uc480 Viewer user interface shows all options. See also Start
dialog .

Customize Opens the Customize dialog box where you can make various settings for
the startup behavior of uc480 Viewer

Show start dialog If this option is selected, the profiles start dialog shows on every start of
uc480 Viewer.

Exit Exit the demo program

3.4.2.5.2 Edit

The "Edit" menu contains the clipboard functions.

Copy Ctrl+C: Copy the displayed image content to the Clipboard. Overlay data created using the Draw
function is also copied automatically.

3.4.2.5.3 View

The "View" menu contains the options for setting the display mode and for opening the dialog boxes.

Render mode Image display

Disable Deactivate display

Normal Display at original size

Fit to window Scale display to window size

Quarter size Scale display down to quarter size

Half size Scale display down to half size

Double size Scale display up to double size

Mirror up/down Mirror display on horizontal axis

Show only AOI AOI is displayed without black border

80

80

80

81

82

83

83

84

76

85

76

82

© 2013 Thorlabs GmbH

3 Operation

81

Line view (horizontal) Opens the Line view window (row view)

Line view (vertical) Opens the Line view window (column view)

Histogram Opens the Histogram window

Zoom window Opens the Zoom window

Pixel peek window Opens the Pixel peek window

Waterfall window Opens the Waterfall window

Log window Opens the Log window

Image infos Opens the Image infos window

3.4.2.5.4 uc480

The "uc480" menu contains functions for image capture and camera configuration.

Initialize Open camera and show live image

Initialize and stop Open camera

Standby The camera changes to standby mode

Close Close camera

Reset to defaults Resets all values set in the demo program to the defaults

Start live video Live video on/off

Snapshot Snapshot from live video

Sync Trigger (Rising Edge) Starts capture in freerun synchronization mode on the specified edge of the
trigger signal.

The freerun synchronization mode is currently not supported by DCx camera
models.

Sync Trigger (Falling Edge)

Single trigger Triggered snapshot (software trigger)

Continuous trigger Continuous triggered capture on/off

Trigger source hardware/software can be set in the corresponding property
page

Properties ... Opens the camera properties dialog

Auto contrast Activate automatic brightness control

Set new AES/AGC AOI Define active area for automatic brightness control

Clear AES/AGC AOI Clear active area defined for automatic brightness control

Auto whitebalance Activate automatic white balance

Set new AWB AOI Define active area for automatic white balance

Clear AWB AOI Clear active area defined for automatic white balance

Sharpness measure AOI Draw an AOI and measure sharpness within the AOI

Set new AOI After calling "Set new AOI", you can select an area of interest with the
mouse

Clear AOI Clears the area of interest (reset to full frame)

User allocated image The memory is allocated not via the SDK function
is_SetAllocatedImageMem() , but by the application

Sound on transfer failed Output an acoustic signal if a transmission error occurs

Error report Errors are displayed in a dialog box

Clear counters Reset the counters (see uc480 Viewer status bar)

86

86

86

87

88

88

89

90

79

20

103

92

106

108

97

301

79

© 2013 Thorlabs GmbH82

DCx Cameras

3.4.2.5.5 Draw/Measure

The "Draw" menu contains functions drawing annotations as overlay on the live image.

Note

Setting the measuring unit

You can take simple measurements in uc480 Viewer. Before you start measuring, the camera must be calibrated
to a scale. The []/pixel unit indicates the actual distance that corresponds to one pixel. To set the measuring unit,
do the following:

1. Mount the camera on a stand. Place an object of known size below the camera (e.g. a ruler).

2. Make sure that the measuring unit is set to 1 at first. Then draw a dimension line over a known distance. The
longer you make the dimension line, the higher the measurement accuracy will be.

3. The dimension line will show the length in pixels. Divide the actual distance by the number of pixels measured.
Enter this value in the “Set measuring unit” field of the dialog box.

Example: Actual distance = 10 cm. Measured length in pixels = 200. Measuring unit = 10 cm/200 or 100 mm/200

Select Color Select color for drawings and text

Geometry

Select line width Set line width

Circle

Show circles Show/hide circles

New circle Draw new circle

Delete circles Delete circles

Freehand

Show freehand lines Show/hide freehand drawings

New freehand line Draw new freehand

Delete freehand lines Delete freehand drawing

Line

Show lines Show/hide lines

New line Draw new line

Delete lines Delete lines

Rectangle

Show rectangles Show/hide rectangles

New rectangle Draw new rectangle

Delete rectangles Delete rectangles

Measure

Set measuring unit Set scale

Show measures Show/hide dimension lines

New measure Draw new dimension line

Delete measures Delete all dimension lines

Text

Select font Select font

Show texts Show/hide texts

New text Write new text

Delete text Delete text

Time stamp

Set time stamp position Time stamp position
(top left, top right, bottom left, bottom right)

Show time stamp Show/hide time stamp

© 2013 Thorlabs GmbH

3 Operation

83

Save image + drawings Opens the "Save As" dialog box. The image is stored with all drawings, texts,
measures and dimension lines

Load drawings Loads saved drawings from a *.bin file.

Save drawings Saves current drawings to *.bin file.

Delete all Delete all drawings, texts, measures and dimension lines

3.4.2.5.6 Profiles

The "Profiles" menu provides functions for managing profiles. When you start uc480 Viewer, the application
searches the C:\Program Files\Thorlabs\DCx Cameras\Profile\ folder for profile files and lists them in
the Profiles menu . The profile names shown in the menu are named after the files.

No profile Disables the profile feature. The current settings remain unchanged.

Save current settings as profile Opens the "Save as…" dialog box to save a profile (*.ucp file)

<Profile names> List of profiles available in the program directory

Attention

Do not remove or rename the profile files created in the C:\Program Files\Thorlabs\DCx Cameras
\Profile\ folder when you install the application. Otherwise program functions in uc480 Viewer may not work
correctly.

See also:

"Choose mode" start dialog

Creating profiles

3.4.2.5.7 Help

Hotkeys Opens a window with a list of keyboard shortcuts available in uc480 Viewer.

Info about uc480 Viewer Opens a window showing version information about uc480 Viewer and related
files.

83

76

117

© 2013 Thorlabs GmbH84

DCx Cameras

3.4.2.6 Dialog Boxes

Please choose a dialog box:

Record dialog

Customize

Histogram window

Horizontal/vertical line view

Zoom window

Pixel peek window

Waterfall window

Log window

Image infos

3.4.2.6.1 Recording a Video Sequence

Select the menu File > Record video sequence… to open the uc480 record dialog box. This dialog box provides
all the functions you need to create a video file (.avi) from a sequence of images captured with the DCx Camera.

Note

Video resolution: If the width or height of the video resolution is greater than 2048 pixels, some media players
may not be able to play the video.

Video compression: To reduce the file size, the single frames are stored in the AVI container using an adjustable
JPEG compression. It is possible to extract single frames from the AVI file.

AVI capture workflow

Once the AVI file has been created, images transferred from the DCx Camera are placed in a buffer. Then, the
images are compressed and added to the AVI file which is stored on the hard disk. These operations are not
performed in the same thread as the capturing process. If you capture more images while a compression or write
operation is in progress, the new images will be discarded.

Supported color formats

The supported input color formats are RGB32, RGB24, Y8 and raw Bayer. The output file will always be in RGB24
format, regardless of the input data format. Once the AVI file has been created, the following parameters of the
input image can no longer be changed:

Color format

AOI, binning and subsampling

Show only AOI

Note

AVI recording is only possible in the "Device Independent Bitmap (DIB)" display mode .

84

85

86

87

87

88

88

89

90

80

21

© 2013 Thorlabs GmbH

3 Operation

85

Record dialog box

File
Name of the AVI file opened for recording.

Max. Frames
If you select this check box, you can set the number of frames after which recording should stop.

Maximal [MB]
Sets the maximum size for the AVI file. Recording stops when the AVI file reaches the size limit. You can edit the
entry in this box (default: 1998).

Current [MB]
Indicates the current size of the AVI file.

Received
Indicates the number of images transferred by the camera.

Dropped
Indicates the number of images discarded during compression. A image is dropped if it arrives while
compression is in progress.

Saved
Indicates the number of images saved to the AVI file.

Calc. Framerate
If you select this check box, the frame rate of the AVI file is determined automatically during recording. It can also
be set manually. The frame rate value is stored in the AVI file and evaluated by the movie player. The usual value
is 25 or 30 frames per second.
The recording speed of the video depends on the selected color format, the image size and the compression
level of the AVI file as well as the PC performance.

JPEG Quality
This slider sets the JPEG compression level (1 = lowest quality/highest compression, 100 = highest quality/
lowest compression, default = 75).

Create.../Close
Click this button to create a new AVI file for recording, and to close the file again when you are done. If you select
an existing AVI file, the file contents will be overwritten during recording.

Record/Stop
Starts/stops AVI recording.

Exit
Closes the Record dialog box. A recording in progress is stopped.

See also:

AVI function descriptions

3.4.2.6.2 Customize

Select the menu File > Customize… to open the "Customize" dialog box. This dialog box provides options to
define the behaviour of uc480 Viewer at program start.

The following options are available:

Restore uc480 Viewer parameters when camera is opened
If you select this check box, the currently set camera parameters will be restored when the same DCxCamera

359

80

© 2013 Thorlabs GmbH86

DCx Cameras

model is opened the next time.

Restore window position and size
If you select this check box, the size and position of the program window will be restored when uc480 Viewer is
launched the next time.

Show image info window
If you select this check box, the Image infos window will be opened on program start.

Show log window
If you select this check box, the Log window will be opened on program start.

3.4.2.6.3 Histogram

Select the menu View > Histogram to open the "Histogram" window. This window graphically displays the
frequency distribution of the color values in the image captured by the camera.

For more information on histograms see the Bit depth and digital contrast adjustment chapter.

The histogram always displays 256 values per channel. For color modes with a bit depth of more than 8 bits, the
function evaluates the 8 most significant bits (MSBs).

The following options are available:

Channel
With the "Red", "Green", and "Blue" check boxes, you can enable or disable the display for each color channel.
Avg. displays the average of each color value.
For monochrome images, the average grayscale value is displayed.

Outlined
The "Outlined" check box enables you to toggle the color value display between an area diagram and a line
diagram.

Logarithmic
If you select this check box, the values are displayed with logarithmic scaling.

Show Bayer RGB
This function is only available when a color camera is running in "Direct raw Bayer" mode. If you select this check
box, the histogram represents the individual Bayer color components as red, green and blue channels.

90

89

80

41

© 2013 Thorlabs GmbH

3 Operation

87

3.4.2.6.4 Horizontal / Vertical Line View

Select the menu View > Line view (horizontal/vertical) to open the "Line View" windows, which show the color
values of a pixel row or pixel column.

The line view always displays 256 values per channel. For color modes with a bit depth of more than 8 bits, the
function evaluates the 8 most significant bits (MSBs).

3.4.2.6.5 Zoom

Select the menu View > Zoom window to open the "Zoom" window. This window shows an enlarged view of the
image area at the selected cursor position.

If you enable the "Pixel Peek" check box at the top of the zoom window, the color values at the cursor position are
displayed (see Pixel peek window). Using the slider at the top of the window, you can set the zoom factor in the
range between 0.25 and 20.00. The size of the image area depends on the selected size of the zoom window.

To set the cursor position you want to display in the window, place the cursor at that position in the image, hold the
CTRL key and right-click. Alternatively, you can set the image position using the context menu.

80

80

88

© 2013 Thorlabs GmbH88

DCx Cameras

3.4.2.6.6 Pixel Peek

Select the menu View > Pixel peek window to open the pixel peek window. This window displays the color
values at the selected cursor position and those of the neighboring pixels.

The color values at the cursor position are surrounded by a yellow rectangle. For monochrome images, the
grayscale value is displayed. The window always displays 256 values per channel. For color modes with a bit depth
of more than 8 bits, the function evaluates the 8 most significant bits (MSBs).

If you disable the Pixel Peek check box at the top of the window, the Zoom window is displayed (see Zoom Window
).

To set the cursor position you want to display in the window, place the cursor at that position in the image, hold the
Ctrl key and right-click. Alternatively, you can set the image position using the context menu.

3.4.2.6.7 Waterfall

Select the menu View > Waterfall window to display the waterfall window. This window shows how a selected
image line changes over time. For this purpose, the line at the selected cursor position is copied to the new
window. With each new frame, all lines in the Waterfall window are moved one pixel down, and the new line is
added at the top. This results in an image that flows from top to bottom and is useful for observing short-term
image changes.

To set the cursor position you want to monitor in the Waterfall window, place the cursor at that position in the
image, hold the Ctrl key and right-click. Alternatively, you can set the image position using the context menu.

80

87

80

© 2013 Thorlabs GmbH

3 Operation

89

3.4.2.6.8 Log

Select the menu View > Log window to display the logged data. In this window events and messages are
logged.

The following options are available:

Level
With these radio buttons, you choose the logging level (Off, Low, Medium, High). The last level used is saved
when you close the window. The next time you open the log window, logging is performed at that level.

Auto Scroll
When you select the Auto Scroll check box, the display automatically scrolls up when new entries arrive so that
the new entries can be read.

Log Transfer Failed
Select the Log Transfer Failed check box if you want to log transfer errors.

Clear Window
The Clear Window button deletes the current messages.

Save
The "Save" button opens the Windows "Save as" dialog box, allowing you to save the messages displayed in the
log window in ASCII format (.txt file).

80

© 2013 Thorlabs GmbH90

DCx Cameras

3.4.2.6.9 Image Infos

Select the menu View > Image infos to display a dialog box containing information on the image capture.

Capture errors

This group box provides detail information on errors that occurred during an image capture process:

Error Description #

API no destination memory There is no destination memory for copying the finished image. 1

API conversion failed The current image could not be processed correctly. 2

API image locked The destination buffers are locked and could not be written to. 3

DRV out of buffers No free internal image memory is available to the driver. The image was
discarded.

4

DRV device not ready The camera is no longer available. It is not possible to access images
that have already been transferred.

5

USB transfer failed The image was not transferred over the USB bus. 6

DEV timeout The maximum allowable time for image capturing in the camera was
exceeded.

7

ETH buffer overrun Not applicable to DCx Cameras 8

ETH missed images 9

80

© 2013 Thorlabs GmbH

3 Operation

91

Possible cause Remedy

1 Not enough destination memory allocated or all
destination buffers locked by the application

Reduce the frame rate so that there is more time to
process the filled destination memory

2 Internal error during internal processing of the
image

-

3 All destination buffers locked by the application Reduce the frame rate so that there is more time to
process the filled destination memory

4 The computer takes too long to process the
images in the uc480 API (e.g. color conversion)

Reduce the frame rate so that there is more time to
process the filled image memory of the driver

Disable resource-intensive API image pre-processing
functions (e.g. edge enhancement, color correction,
choose smaller filter mask for software color
conversion)

5 The camera has been disconnected or closed -

6 Not enough free bandwidth on the USB bus for
transferring the image

Reduce the pixel clock frequency

Operate fewer cameras simultaneously on a USB bus

Check the quality of the USB cabling and components

7 The selected timeout value is too low for image
capture

Reduce the exposure time

Increase the timeout

Camera image buffers, Resent packets

Not applicable to DCx Cameras.

See also:

Troubleshooting

Programming: is_GetImageInfo()

499

244

© 2013 Thorlabs GmbH92

DCx Cameras

3.4.2.7 Properties

When you select uc480 > Properties from the main menu, a dialog box opens where you can set the DCx
camera parameters. Changes made to camera and image settings here will take effect immediately.

When you close a camera in uc480 Viewer, the current settings are written to the Windows Registry. They will be
loaded the next time you open a camera of the same type (see also the Customize chapter). To save the
settings to the camera or to an ini file, select File > Save parameters from the main menu. To load settings,
select the "Load parameters" option.

Note

Depending on the camera model opened and the user mode set not all of the property pages might be
available.

Camera

Image

Size

Format

Color

Trigger

Input/output

AES/AGC (automatic brightness control)

AWB (auto white balance)

Miscellaneous

Multi AOI

Sequence AOI

Shutter

81

85

80

80

93

95

97

99

102

103

104

106

108

110

112

113

115

© 2013 Thorlabs GmbH

3 Operation

93

3.4.2.7.1 Camera

This tab provides parameters for settings the pixel clock frequency, frame rate and exposure time for your DCx
camera (see also Pixel clock, frame rate and exposure time).

Timing

Camera peak bandwidth
Maximum required bandwidth in MByte/s (peak load).

Camera average bandwidth
Required average bandwidth in MByte/s. The average bandwidth is calculated from the following data: Image
size, image format, frame rate, and interface-related protocol overhead.

Sensor (max. bandwidth)
Maximum data volume in MPixel/s created by the sensor.

With USB 2.0 cameras, the upper limit depends on the USB chipset on the mainboard/USB card and on the
number of USB devices connected. If transfer errors occur, reduce the pixel clock frequency.

Pixel Clock
Sets the clock rate at which the image data is read from the sensor. Changes to this parameter affect the frame
rate and the exposure time.
Many CMOS sensors allow higher pixel clock frequencies in binning/subsampling mode.

o Optimum
When you select this check box, the highest possible pixel clock is determined and set automatically. The
optimum pixel clock is the clock rate at which no transfer errors occur during the time (in seconds) set in the
"Auto pixel clock test period" box. The longer you set the test period, the more reliable the determined pixel
clock becomes. The total time it takes to automatically set the pixel clock is a bit longer than the test period
setting.

Note

If the "Exposure (AES)" (automatic exposure) option is enabled in the AES/AGC tab the pixel clock cannot
be set manually.

Frame rate (Freerun)
Sets the frame rate in freerun mode. The available frame rate range depends on the pixel clock setting.

44

106

© 2013 Thorlabs GmbH94

DCx Cameras

o Hold
When you select this check box, the frame rate will remain constant if the pixel clock changes. If the frame
rate cannot be maintained, it is set to the nearest possible value.

o Max
The camera is operated at the maximum frame rate that is possible at the current pixel clock setting.

o Auto
Select this check box to activate the auto frame rate function. This function is only available when auto
exposure shutter is enabled.

Exposure time
Sets the exposure time. The available exposure time range depends on the pixel clock setting and the frame
rate. A low frame rate setting allows long exposure times. A high frame rate setting reduces the maximum
possible exposure time. In combination with flash an exposure time of 1 ms has been proven.

o Hold
When you select this check box, the exposure time will remain constant if the frame rate changes. If the
exposure time cannot be maintained, it is set to the nearest possible value.

o Max
The camera is operated at the maximum exposure time that is possible at the current frame rate.

o Auto
Select this check box to activate the auto exposure shutter function. If the "Auto" check box is selected, the
exposure time and pixel clock can no longer be adjusted manually. Selecting the "Hold" or "Max" check box
deselects the "Auto" check box.

o Long-term
If you select this check box, you can set an exposure time of up to 10 minutes on CCD cameras.

o Fine increment
Select this check box to set the exposure time in fine increments. This option is not supported by all camera
models.

Default

Click this button to reset all parameters to the model-specific defaults.

106

106

© 2013 Thorlabs GmbH

3 Operation

95

3.4.2.7.2 Image

On this tab you can set the sensor gain parameters for your DCx camera (see also Gain and offset).

Master gain

The following functions control the analog image signal gain and the black level. The analog adjustments are made
directly in the sensor, which achieves better results than image adjustments via software.

Gain [0 ... 100]
Gain for overall image brightness. Some camera models have no master gain.
Master gain = 100 means maximum gain; the actual factor is displayed. A gain factor of 1x disables master gain.
The maximum possible gain factor depends on the model you are using.

o Auto
Select this check box to activate the automatic gain control function. Manually changing the master gain
setting disables the "Auto" function.

o Gain boost
Additional analog camera hardware gain. The gain factor ranges between 1.5x and 2x, depending on the
camera model.

Black level (offset) [0 ... 255]
Offset for the black level of the sensor signal. The sensor adjusts the black level of the pixels automatically by
default. If the environment is very bright, it can be necessary to adjust the black level manually. High gain may
offset the black level. Only an additive offset is possible (increase of the black level).

o Auto
The black level is automatically corrected by the sensor (recommended).

Note

With cameras featuring both master gain and RGB gain, the two gain factors are multiplied. Very high gain
values can be achieved in this way. If you want to use the RGB sliders for color adjustment, we recommend
setting green gain to 0 and using only red and blue gain.

Color gain

You can fix a setting (in kelvins) for the color temperature of an image when you are using a color camera. The
function will use the sensor's hardware gain controls for the setting, as far as possible. In addition, you can choose

44

106

180

© 2013 Thorlabs GmbH96

DCx Cameras

between different color spaces. A specific color temperature will result in slightly differing RGB values, depending
on the selected color space.

White balance

o Manual
Set the RGB gains manually.

o Auto
Enable the AWB (auto white balance) function.

o Default gains
Default gain values for this camera model.

o sRGB D50
sRGB (standard RGB) color space with a white point of 5000 kelvins (warm light)

o sRGB D65
sRGB (standard RGB) color space with a white point of 6500 kelvins (mid daylight)

o CIE RGB E
CIE-RGB color space with standard illumination E

o ECI RGB D50
ECI-RGB color space with a white point of 5000 kelvins (warm light)

o Adobe RGB D65
Adobe RGB color space with a white point of 6500 kelvins (mid daylight). The Adobe RGB color space is larger
than the sRGB color space, but not all devices can render it.

Presets
This selection box offers several presets for common illumination types.

Temperature (Kelvin)
Here, you can set a color temperature value directly.

For color cameras, the following functions control the analog gain for the RGB color channels. The analog control is
performed in the sensor and achieve better results than software based image correction.

Red gain [0 ... 100]
Amplifies the red color values

Green gain [0 ... 100]
Amplifies the green color values

Blue gain [0 ... 100]
Amplifies the blue color values

Gamma

This function activates the gamma function and sets the factor for the gamma curve. The gamma function
emphasizes dark image areas according to a non-linear curve.

Hardware sensor gamma
This option enables gamma correction by the hardware, using a fixed factor.

Default

Click this button to reset all parameters to the model-specific defaults.

See also:

Characteristics and LUT: Gamma

Programming:

Color Temperature: is_ColorTemperature()

108

39

180

© 2013 Thorlabs GmbH

3 Operation

97

3.4.2.7.3 Size

On this tab, you can set the image size parameters for your DCx camera (see also Reading out partial images).

AOI

These parameters allow selecting the size and position of the area of interest .

Profile
With this selection box, you can set several common image formats on CMOS sensors. The driver then sets the
selected format using either AOI, binning / subsampling, or scaler, so that it achieves the best image quality.

Show only AOI
The AOI is displayed without a black border. Internally, the image is managed at the AOI resolution and not the
full sensor resolution. This function saves memory and computing time when rendering the image.

o Width
Sets the AOI width.

o Height
Sets the AOI height.

o Left
Sets the left-hand position of the AOI.

Center
Select this check box to center the AOI horizontally.

o Top
Sets the top position of the AOI.

Center
Select this check box to center the AOI vertically.

Horizontal format / vertical format

With these options, you can select the binning and subsampling settings for the image.

Binning Horizontal/Vertical
These radio buttons allow setting the binning factor. The image resolution is then reduced by the selected
factor. You can use binning to increase the frame rate.

34

34

38 37

460

© 2013 Thorlabs GmbH98

DCx Cameras

Subsampling Horizontal/Vertical
These radio buttons allow setting the subsampling factor. The image resolution is then reduced by the selected
factor. You can use subsampling to increase the frame rate.

Mirror Left/right | Up/down
Select this check box to flip the image horizontally/vertically.

Scaler

With these options, you can configure the image scaling settings provided by specific DCxCamera sensors. These
options are not available for all camera models.

Enable
Enables the sensor's image scaling feature.

Factor
With this slider, you can set the scaling factor.

Anti aliasing
The anti aliasing function smoothes the image edges during scaling.

Native AOI
Shows the native image size without the effect of the scaler.

Max. pixel clock
Shows the maximum possible pixel clock with scaler.

Note

Binning and subsampling in color and monochrome cameras: Some color cameras perform only mono
binning/subsampling due to the sensors they use. If mono binning or subsampling is used in a color camera, the
color information will be lost.

Some monochrome cameras perform only color binning/subsampling due to the sensors they use. If color binning
or subsampling is used in a monochrome camera, image artifacts might become visible.

Default

Click this button to reset all parameters to the model-specific defaults.

See also:

Basics: Reading out partial images

Programming:

Area of interest: is_AOI()

Binning: is_SetBinning()

Subsampling: is_SetSubSampling()

Profiles/image formats: is_ImageFormat()

460

34

159

310

347

267

© 2013 Thorlabs GmbH

3 Operation

99

3.4.2.7.4 Format

On this tab you can set parameters for the color format and display mode of your DCx camera.

Pixel format

With these settings you define the target format to which you want to convert the sensor's raw data (raw Bayer).
The Color formats chapter provides a detailed list of all DCxCamera color formats and their representation in
the memory.

Debayering quality
With this setting you select the conversion algorithm.

o Software

Normal
The conversion is performed by software in the PC. The standard filter mask is used for the conversion.

High
The conversion is performed by software in the PC. A large filter mask is used for the conversion.

o Open CL

Normal
The conversion is performed on the graphic card's processing unit. The standard filter mask is used for the
conversion.

High
The conversion is performed on the graphic card's processing unit. A large filter mask is used for the
conversion.

o Hardware Normal
The conversion is performed in the camera. The standard filter mask is used for the conversion. This radio
button is not available for DCx cameras.

Note

Color conversion with Open CL is not supported by all graphic cards.

Open CL is not supported by mono cameras.

502

© 2013 Thorlabs GmbH100

DCx Cameras

With the format radio buttons you specify the format in which the image data are written to the memory. The
following formats are available:

Sensor raw 8
Direct output of the sensor's raw data (8 bits per pixel). If you are using a color camera, the pattern of the Bayer
color filter is visible. With monochrome cameras, raw Bayer corresponds to the grayscale format with the
exception of the LUT/gamma curves.

Sensor raw 12
Direct output of the sensor's raw data (12 bits per pixel, starting from the least significant bit (LSB)).

Sensor raw 16
Direct output of the sensor's raw data (12 bits per pixel, starting from the most significant bit (MSB)).

Mono 8
Output of a grayscale image to which the LUT/gamma curve has been applied (8 bits per pixel).

Mono 12
Output of a grayscale image to which the LUT/gamma curve has been applied (12 bits per pixel, starting from
least significant bit (LSB)).

Mono 16
Output of a grayscale image to which the LUT/gamma curve has been applied (12 bits per pixel, starting from
most significant bit (MSB)).

RGB5 (5 5 5)
Output of an image converted according to RGB 15 (5 bits per pixel for R, G and B)

RGB565 (5 6 5)
Output of an image converted according to RGB 16 (5 bits per pixel for R and G, 6 bits per pixel for B)

BGR8 (8 8 8)
Output of an image converted according to RGB 24 (8 bits per pixel for R, G and B)

BGRA8 (8 8 8)
Output of an image converted according to RGB 32 (8 bits per pixel for R, G and B, 8 bit padding)

BGRY8 (8 8 8 8)
Output of an image converted according to RGB 24 (8 bits per pixel for R, G and B) and an additional gray
channel (8 bits per pixel)

BGR10 (10 10 10)
Output of an image converted according to RGB 30 (10 bits per pixel for R, G and B, 2 bit padding (MSB = 0))

BGR12 (12 12 12)
Output an image converted according to RGB 36 (12 bit per pixel for R, G and B, 4 bit padding)

BGRA12 (12 12 12)
Output an image converted according to RGB 48 (12 bit per pixel for R, G, B and alpha channel, 4 bit padding)

RGB8 Planar
Output an image converted according to planar RGB 8.

RGB8 Planar (red)
Output the red color component of an image converted to planar RGB 8

RGB8 Planar (green)
Output the green color component of an image converted to planar RGB 8

RGB8 Planar (blue)
Output the blue color component of an image converted to planar RGB 8

UYVY (YUV422)
Output of an image converted according to YUV (8 bits per pixel for U, Y, V and Y)

CBYCRY
Output of an image converted according to YUV (8 bits per pixel for Cb, Y, Cr and Y)

Note

We recommend 32 bit RGB mode for TrueColor applications. Y8 mode is usually used for monochrome
applications.

Note

Images with a bit depths of more than 8 bits can be saved in the PNG format. 12 bit formats are converted in 16
bits.

© 2013 Thorlabs GmbH

3 Operation

101

Display mode

With these radio buttons you select the display mode for the image.

Device independent (DIB)
The processor actively renders the image. This color format is supported by all graphics hardware and is
recommended for applications that will be used on different PCs.

Direct3D (Desktop color)
In this mode the images are written directly to an invisible area of the graphics card, mixed with optional overlay
image data and displayed by the card without load on the CPU. The mode also allows scaling the images in real
time.

Note

The display mode Direct3D is only supported by graphics cards with DirectX functionality.

OpenGL
OpenGL is a cross-platform and cross-language programming interface for developing 2D and 3D computer
graphics. Similar to Direct3D the capabilities of the graphics card are used to increase the performance.

Open MP

Use OpenMP
OpenMP (Open Multi-Processing) is a programming interface that supports distributed computing on multi-core
processors. When you activate OpenMP support, intensive computing operations, such as the Bayer conversion

, are distributed across several processor cores to accelerate execution. The use of OpenMP, however,
increases CPU load.

Default

Click this button to reset all parameters to the model-specific defaults.

See also:

Basics: Color filter (Bayer filter)

Basics: Display modes

Basics: Bit depth and digital contrast adjustment

Basics: Characteristics and LUT

Programming: is_SetColorMode()

Programming (Open MP): is_Configuration()

Color formats in memory: Appendix: Color formats

Graphics card: System requirements

26

26

21

41

39

319

183

502

56

© 2013 Thorlabs GmbH102

DCx Cameras

3.4.2.7.5 Color

This tab provides color rendering settings for your DCx camera (see also Color filter).

Note

This tab is only available if a color camera is opened in the uc480 Viewer.

Color saturation

This function enables and configures color saturation control.

In the YUV format, color information (i.e. the color difference signals) is provided by the U and V channels. In the U
channel they result from the difference between the proportion of blue and Y (luminance), in the V channel from the
difference between the proportion of red and Y. For the use in other color formats than YUV, U and V are converted
using a driver matrix.

Combine
Selecting this check box synchronizes the two "Saturation U" and "Saturation V" sliders.

IR color filter correction matrix

When using color cameras with IR filter glass, you need to set the appropriate color correction matrix to ensure
correct color rendering. The driver detects the IR filter type and sets this value automatically ("Auto" button). You
can also select the correction matrix manually.

Sensor color correction

This function corrects the color values of a pixel. The colors are rendered more accurately after the color crosstalk
of the individual Bayer pattern filters has been eliminated by the color correction. The color correction factor is
stepless adjustable between 0 (no correction) and 1 (full correction).

Activating the sensor color correction may increase CPU load.

Default

Click this button to reset all parameters to the model-specific defaults.

26

26

© 2013 Thorlabs GmbH

3 Operation

103

3.4.2.7.6 Trigger

This tab provides the settings for triggered image capture with your DCx camera (see also Digital in-/output (trigger/
flash)).

Input

Status
If you select this check box, the signal level applied at the camera's trigger input is polled and displayed.

Trigger delay (frame rate)
Select this check box to set a delay between the arrival of a software or hardware trigger signal and the start of
exposure.

Mode

With these radio buttons, you choose which trigger mode you want to activate in the camera:

Software
The camera is running in software trigger mode without a signal applied. The images are captured continuously.

Falling edge
The camera captures an image on the falling edge of the signal applied to the trigger input.

Rising edge
The camera captures an image on the rising edge of the signal applied to the trigger input.

Trigger timeout [ms]
Specifies a timeout for the trigger mode. If the camera does not receive a trigger signal within this time, a timeout
message is transmitted and the transmission error counter is incremented.

Debounce

This function is not relevant for DCx cameras.

Camera

Global start (trigger mode)
If you select this check box, all rows of a rolling shutter sensor are exposed simultaneously. Activating Global
start only makes sense when using a flash. This function is not supported by all models.

47

31

© 2013 Thorlabs GmbH104

DCx Cameras

Note

Frame rates in trigger mode: Please note that the frame rate in trigger mode is always lower than in freerun
mode. This is due to the sequential transmission. First the exposure takes place, then the transfer. A new exposure
can only be performed after the transmission is completed. Therefore, the freerun mode is faster.

High trigger rates are achieved only with short exposure times and a high pixel clock setting.

Default

Click this button to reset all parameters to the model-specific defaults.

See also:

Basics: Shutter methods: Global start

Programming:

Trigger: is_SetExternalTrigger()

3.4.2.7.7 Input / Output

On this tab, you can set the parameters for the flash output and the GPIOs on your DCx camera (see also Digital
in-/output (trigger/flash)).

Attention

When you are using the DCx Camera's flash function, you need to re-enable the flash (i.e. disable and then
activate it again) whenever you change the pixel clock setting or horizontal image geometry. This is necessary to
newly synchronize the internal timing settings of the flash output with the start of sensor exposure.

Flash output

With these radio buttons, you choose which digital output function you want to activate on the camera:

Off
The digital output is disabled.

Constant high

32

327

47

© 2013 Thorlabs GmbH

3 Operation

105

The digital output is set to "High" regardless of the exposure.

Constant low
The digital output is set to "Low" regardless of the exposure.

Flash high active
The digital output is set to "High" during the exposure.

Flash low active
The digital output is set to "Low" during the exposure.

Global exposure window
The values for flash delay and duration are calculated to trigger the flash when all sensor rows are exposed
simultaneously for sensors with rolling shutters. If you are using the "Global start" function, the flash delay has to
be set to 0 (see also Shutter methods).

Flash delay
Sets the delay for the digital output. After an exposure has started, activating the digital output is delayed by the
time set in flash delay.

Duration (0 = Auto)
Sets the switching time of the digital output. The digital output is activated for the time set in "Duration". The
value 0 means that the signal is active over the entire exposure time (default).
Requirement in freerun mode: The "Global exposure window" must be enabled.

Pulse-width modulation (only DC320x Cameras)

The pulse-width modulation (PWM) can be controlled by two parameters (frequency and duty cycle) and can be set
on the flash output and the additional GPIOs respectively (see also is_IO()).

Frequency (in Hz)
Frequency of the pulse-width modulation (PWM)

Duty cycle (in %)
Duty cycle of the pulse-width modulation (PWM width)

GPIO

The GPIOs (General Purpose I/O) of the DCx Cameras can be used as inputs or outputs. See the Model
comparison list for the camera models which support GPIO.

Status
Polls the signal level applied to the GPIO.

Input
Sets the GPIO as trigger input.

Output low
Sets the GPIO as output. The output signal is statically set to "low".

Output high
Sets the GPIO as output. The output signal is statically set to "high".

Flash
Sets the GPIO as flash output. The settings you made in the "Flash output" box are used.

Note

Detailed information on wiring the DCxCamera inputs and outputs is provided in the "Electrical Specifications"
section of the Specifications chapter.

Default

Click this button to reset all parameters to the model-specific defaults.

31

280

459

458

© 2013 Thorlabs GmbH106

DCx Cameras

3.4.2.7.8 AES/AGC (Automatic Brightness Control)

On this tab, you can set parameters for automatically adjusting the exposure time and sensor gain of your DCx
camera (see also Automatic image control).

Notes

Auto Exposure Shutter (AES) automatically adjusts image brightness based on the exposure shutter setting.
Long exposure times may cause motion blur.

Auto Gain Control (AGC) automatically adjusts image brightness based on the hardware gain control setting
of the camera sensor. You can activate this function in addition to AES if ambient light conditions are poor. High
gain settings may cause artefacting.

Auto Frame Rate (AFR) adjusts the frame rate to allow longer exposure times (see also Pixel clock, frame rate
and exposure time). Selecting this check box might decrease the frame rate substantially. This function is
only available when AES is active.

Image contrast

Use the following settings to configure automatic brightness control:

Exposure (AES)
Enables automatic adjustment of image brightness, i.e. the exposure time is automatically adjusted to achieve
the preset brightness reference value.

Note

If AES is enabled together with AGC and AFR, AES has the highest priority, i.e. AES is set first and then AGC
and AFR.

Framerate (AFR)
Enables the framerate control. This option is only available when AES is active.
If the maximum exposure time is not sufficient for a brighter image, you can use AFR to reduce the frame rate
and so extend the exposure time.

Gain (AGC)
Enables the automatic gain, i.e. the control automatically adjusts the gain to achieve the set brightness
reference value.

45

44

44

44

© 2013 Thorlabs GmbH

3 Operation

107

Run once
The control is switched off automatically if the specified target value is reached or nearly reached, and the set
value does not change after three measurements.

Use sensor's auto features
This option enables on some sensors the internal brightness adjustment.

Brightness reference
Defines the target value which should be set.
Under normal conditions, a reference value of 128 is sufficient.

Exposure limit
Sets the upper limit for the exposure time. This upper limit is not exceeded if AES is enabled. If AES and AFR is
enabled then the upper limit is ignored.

Gain limit
Sets the maximum gain limit. This upper limit is not exceeded when AGC is enabled.

Speed
Sets the adjustment speed. The higher the speed control is set, the faster the adjustment is. Setting the speed
control to 0 disables the adjustment functionality. If the value is set to high the adjustment starts to oscillate. In
this case you have to reduce the adjustment speed.

Hysteresis
Defines the difference by which the actual value can differ from the target value. If the target value is set e.g. to
128 and the hysteresis is set to 2, so there will be no regulation as long as the actual value is between 126 and
130 (see also Automatic image control: Hysteresis).
If the value for hysteresis is too small, the adjustment starts to oscillate. It is recommended to keep the standard
value of 2.

Skip frames
Number of frames that will be skipped during automatic image control when freerun mode is active (see also
Automatic image control: Control speed). The higher the frame rate, the higher the value should be. If the
value is too small, the adjustment may starts to oscillate, or there is an overload of the system. In this case
increase the value.

Histogram area

The histogram area specifies which area of the image will be used for calculating the average grayscale value of
the image. You can set the size of the histogram area by using the tools on the toolbar.

Default

Click this button to reset all parameters to the model-specific defaults.

46

46

77

© 2013 Thorlabs GmbH108

DCx Cameras

3.4.2.7.9 AWB (Automatic White Balance)

On this tab, you can set parameters for automatically adjusting the white balance of your DCx camera (see also
Automatic image control).

Note

This tab is only available if a color camera is opened in the uc480 Viewer.

To carry out white balancing, aim the camera at a surface of a uniform gray color. You can perform white
balancing either manually with the RGB gain control or by using the "Auto White Balance (AWB)" function.

Image white balance

Drop down list for AWB mode

o Off
The automatic white balance is disabled.

o Auto (Gray World)
If this option is enabled, the RGB gains are so controlled that the three colors have the same average.

o Auto (Kelvin)
If this option is enabled, the RGB gains are controlled by predefined color temperatures.

Drop down list for color spaces
This drop down list is only available if AWB mode "Auto (Kelvin)" is selected. Here, you can select the color
space e.g. sRGB D50 or CIE RGB E.

Run once
The control is switched off automatically if the specified target value is reached or nearly reached, and the set
value does not change after three measurements.

Use sensor's auto features
This option enables on some sensors the internal white balance.

Red offset/Blue offset
Shifts the respective color intensity relative to green
Example: If the Gray World algorithm controls to an average value of 65 and a blue offset is set of -40, the blue
gain so is adjusted that blue has an average value of 25.

45

45

© 2013 Thorlabs GmbH

3 Operation

109

Gain min
Sets the minimum gain. This limit is not exceeded, i.e. a base gain is set for the white balance control. Via this
minimal gain color cameras without master gain can reproduce the gain.

Gain max
Sets the upper adjustment limit. This limit is not exceeded.

Speed
Sets the adjustment speed. The higher the speed control is set, the faster the adjustment is. Setting the speed
control to 0 disables the adjustment functionality. If the value is set to high the adjustment starts to oscillate. In
this case you have to reduce the adjustment speed.

Hysteresis
Defines the difference by which the actual value can differ from the target value. If the target value is set e.g. to
128 and the hysteresis is set to 2, so there will be no regulation as long as the actual value is between 126 and
130 (see also Automatic image control: Hysteresis).
If the value for hysteresis is too small, the adjustment starts to oscillate. It is recommended to keep the standard
value of 2.

Skip frames
Number of frames that will be skipped during automatic image control when freerun mode is active (see also
Automatic image control: Control speed). The higher the frame rate, the higher the value should be. If the
value is too small, the adjustment may starts to oscillate, or there is an overload of the system. In this case
increase the value.

Histogram area

The histogram area specifies which area of the image will be used for calculating the average value of the image.
You can set the size of the histogram area by using the tools on the toolbar.

Default

Click this button to reset all parameters to the model-specific defaults.

95

46

46

77

© 2013 Thorlabs GmbH110

DCx Cameras

3.4.2.7.10 Miscellaneous

This tab provides parameters for setting miscellaneous functions for your DCx camera.

Note

Sensor hotpixel correction and DCC1240x / DCC3240x: If sensor hot pixel correction and Multi AOI are enabled,
the sensor displays a four pixel wide black line between the AOIs.

Hotpixel

This function corrects the sensor hotpixels specified in the camera EEPROM.

Mark hotpixel
If you select this check box, the hotpixel positions stored in the camera are graphically represented in the image.

Hotpixel correction
Select this check box if you want to enable a software-based hotpixel correction.

Sensor hotpixel correction
Enables the sensor's internal hotpixel correction for some models.

Test image

The camera transmits a selectable test image that you can use for testing the data transmission. You can choose
from different types of test images, depending on the camera type.

Selection

Parameter value
You can adjust the appearance of some of the test images with the "Parameter value" slider.

© 2013 Thorlabs GmbH

3 Operation

111

Note

Manually changing the pixel clock will disable the test image mode.

Animated test images are ideal for testing recorded sequences.

With some sensors, the sensor gain setting has an influence on the test image.

A white test image is recommended to check the camera's maximum load on the USB bus. Due to the
transmission process, completely white camera images require somewhat more bandwidth on the USB bus
than completely black images.

To turn on hotpixel correction does not make sense for a test image.

The test images are transferred with a bit depth of 8 bit.

Edge enhancement

This function activates a software filter that emphasizes the edges in the image.
Enabling the edge enhancement function increases the CPU load during image capture.

I2C

This function is not relevant for DCx Cameras.

Default

Click this button to reset all parameters to the model-specific defaults.

See also:

Basics: Hot pixels

Programming:

Hotpixel: is_HotPixel()

Edge enhancement: is_EdgeEnhancement()

Test image: is_SetSensorTestImage()

28

260

206

345

© 2013 Thorlabs GmbH112

DCx Cameras

3.4.2.7.11 Multi AOI

This tab provides settings for configuring the Multi AOI feature provided by specific DCxCamera sensors. The Multi
AOI function allows defining more than one AOI in an image and transferring these AOIs all at the same time (see
Area of interest (AOI) in the "Basics" chapter).

Note

This tab is only available when a DCC1240x or DCC3240x Camera has been opened in uc480 Viewer.

Notes

When the Multi AOI function is enabled, no changes can be made to the image size settings (e.g. binning,
subsampling, scaling). Disable Multi AOI to change the size of an image and then re-enable the function.

If sensor hotpixel correction and Multi AOI are enabled, the sensor displays a four pixel wide black line
between the AOIs.

The available step widths for the position and size of image AOIs depend on the sensor. The values
defining the position and size of an AOI have to be integer multiples of the allowed step widths. For
detailed information on the AOI grid see the DCC1240x / DCC3240x chapter.

It is possible to switch the AOI in the horizontal direction.

X-axes/Y-axes
Select one of the two check boxes to create two AOIs along the X or Y axis. Select both check boxes to create
four AOIs.

Sensor hotpixel correction
This check box enables the sensor's internal hotpixel correction function.

Refresh preview
Refreshes the preview image shown at the bottom of the tab.

X1...X4/Y1...Y4
Defines the X and Y values in pixels for the individual AOIs.

Preview window
Displays a preview image and allows graphically setting the individual AOIs by moving the colored boxes that are
displayed at the end of each axis.

Default

Click this button to reset all parameters to the model-specific defaults.

35

461

© 2013 Thorlabs GmbH

3 Operation

113

3.4.2.7.12 Sequence AOI

On the "Sequence AOI" tab you do the settings for the sequence AOI mode of some DCx Cameras. In this mode
you can capture e.g. the same AOI with different parameter sets – exposure, gain, etc. (see Basics: Area of interest
(AOI)).

Note

The sequence AOI mode is only supported by DCC1240x and DCC3240x camera models.

Note that the sequence AOI mode cannot be used in combination with scaler, subsampling or binning.

In contrast to the Multi AOI the different AOIs are captured one after another in sequence AOI mode. The
sensor readouts all AOIs sequentially and transfers the images as e.g. the same AOI is readout four times. The
frame rates are identical, but you can define different settings. For every AOI exposure time and master gain can
be set individually. For example you can capture the same AOI at first with a short exposure time and after this with
a long exposure time. An advantage of the sequence AOI mode is that you need no time for moves of the position
and it is not necessary to reprogram the AOI.

Beside the normal AOI (AOI 1) you can define up to three additional AOI 2-4. These additional AOI have the same
size as AOI 1, but you can set different parameters for:

Position of AOI

Exposure time

Gain

Readout cycles (number of images)

After you have defined an AOI, open the "Sequence AOI" tab. In the upper area you see the position and size of
AOI 1. In the area below you define the further AOIs.

Number of used AOIs
Here, you define the numbers of additional AOI. If you select further AOIs, the parameters of AOI 1 are copied for

35

112

© 2013 Thorlabs GmbH114

DCx Cameras

the new AOI initially.

Current AOI
Here, you select the AOI which parameters you want to edit. You can only change the parameters of AOI 2, 3 or
4.

Automatic copying of the AOI 1 image parameters
If you change AOI 1, e.g. set a new exposure time, these changes are copied to AOI 2 etc. if this option is
activated. Otherwise the changes of AOI 1 have no influence on the further AOIs.

Show AOI index in image
Activate this option see in the left upper corner the number of the AOI. By default the font has the color black.

X position/Y position
Moves the current AOI in vertical or horizontal direction respectively. An overlapping of the different AOIs is
possible.

Exposure time
Changes the exposure time of the current AOI.

Master gain
Setting the gain for the current AOI.

Readout cycles
Here, you can define for AOI 2-4 how often they are readout and the images are transferred. AOI 1 is always
readout once.

Hint

If capturing the same AOI with different exposure times, you can create via software a HDR image from the single
images.

© 2013 Thorlabs GmbH

3 Operation

115

3.4.2.7.13 Shutter

Note

This tab is only available when a DCC1240x or DCC3240x Camera has been opened in uc480 Viewer and
provides parameters for setting the readout modes provided these camera's sensors (see also Shutter methods
and Line scan mode in the "Basics" chapter).

Area

Global shutter
The camera is operated in global shutter mode. This mode allows capturing fast-moving objects without
geometric distortions.

Global shutter (alternative timing)
When using the camera in global shutter mode there can be in some cases problems with the black level. In the
mode "Global shutter (alternative timing)" the sensor holds the black level as in rolling shutter mode. This mode
should not be used with a frame rate below 2 fps.

Rolling shutter
The camera is operated in rolling shutter mode. This mode reduces image noise in image capture. To capture
fast-moving objects in rolling shutter mode, you might need a flash.
Note that the flash timing can conflict with the sensor exposure if you use flash in rolling shutter mode without
global start.

Rolling shutter (global start)
The camera is operated in rolling shutter mode but with global start. As in this mode the exposure of all lines
is started at the same time, this mode is especially suitable for flash.

For further information see "Basics": Shutter methods .

Line

Note

Currently, only the monochrome DCC1240M and DCC3240M/N camera models support the "fast line scan" mode.

Fast linescan
Enables the sensor's fast line scan mode.

30

33

30

31

32

30

© 2013 Thorlabs GmbH116

DCx Cameras

Line number

Defines the line to be scanned

For further information see "Basics": Line scan mode .

Log mode

The Log mode is a special mode of the DCC1240x and DCC3240x camera models. It defines the threshold defines
at which the linear sensitivity changes into a logarithmic characteristic.

At very short exposure times (less than 0.1 ms) there may occur e.g. so-called crosstalk effects in the global
shutter mode, which have the effect that the image content appears brighter in the vertical from top to bottom. This
effect can be avoided by the Log mode.

Factory-default with anti-blooming
Recommended setting

Off (no anti-blooming)
At longer exposure times without gain, it may happen that the sensor does not achieved white. This is because of
the sensor automatism to prevent overexposure (blooming). Remedy offers the use of a gain factor of 1.4x or the
mode "Off (no anti-blooming)."
For short exposure times this mode should not be used, otherwise the image (particularly in global shutter mode)
can be extremely overexposed.

Manual Log mode
In this mode it is possible to display the information in the overexposed image areas. This mode is effective for
exposure times below 5 ms.

o LogMode value
Using a slide control with 13 levels you can adjust the threshold at which the linear sensitivity pass over into a
logarithmic characteristic. Here, the value "0" represents the lowest active level and "12" corresponds to the
highest level.

o LogMode gain
When using the manual Log mode no master gain is possible. The gain can be adjusted with the LogMode
gain. The gain can be adjusted in 5 levels. The level "3" corresponds to a gain factor of 1 for monochrome or
color sensors. For the NIR sensor the level "1" corresponds to a gain factor of 1.
Example: A low level results in a low gain and may display more details in the overexposed image areas. A
higher level gives a higher gain, thereby a darker image can be brightened (see also DCC1240x / DCC3240x
Application Notes).

Default

Click this button to reset all parameters to the model-specific defaults.

33

63

© 2013 Thorlabs GmbH

3 Operation

117

3.4.2.8 Creating profiles

Profiles for setting camera parameters in uc480 Viewer

Profile files for uc480 Viewer are text files with the file name extension *.ucp. As opposed to uc480 parameter files
 (ini files), profiles are not tied to a specific camera model and do not contain all the camera settings. Some

parameters in profiles are relative settings (e.g. exposure 0-100 %) to ensure compatibility with all camera models.

You can create new profiles and load them from the start dialog . When you start uc480 Viewer, the application
searches the C:\Program Files\IDS\uc480\Program\ folder for profile files and lists them in the Profiles
menu . The profile names shown in the menu are named after the files.

Attention

Do not remove or rename the profile files created in the C:\Program Files\Thorlabs\DCx Cameras
\Profile\ folder when you install the application. Otherwise program functions in uc480 Viewer may not work
correctly.

Note

The profiles are a feature of uc480 Viewer. They cannot be used through the uc480 API.

Structure of a profile file for setting camera parameters

Profile files have the structure described below. They do not have to contain all the parameters listed here.

Parameter Description

[DISPLAY]

PIXEL_FORMAT Color format

see also is_SetColorMode()

RENDER_MODE Render mode (DIB, Direct3D, OpenGL)

see also Image display modes and is_SetDisplayMode()

FIT_TO_WINDOW Fits the image to the window

[TIMING]

PIXELCLOCK Pixel clock in MHz

see also Pixel clock, frame rate, exposure time and is_PixelClock()

FRAMERATE Frame rate 0-100 %

see also is_SetFrameRate()

EXPOSURE Exposure time 0-100 %

see also Is_Exposure()

[COLOR]

CORRECTION_FACTOR Color correction factor 0-100 %

see also is_SetColorCorrection()

SATURATION_U Color saturation 0-2x

see also is_SetSaturation()

SATURATION_V Color saturation 0-2x

see also is_SetSaturation()

[IMAGE_PARAMETERS]

EDGE_ENHANCEMENT Edge enhancement

see also is_EdgeEnhancement()

GAMMA Gamma correction

see also is_SetGamma()

[AES_AGC_AFR]

EXPOSURE Auto exposure shutter

see also is_SetAutoParameter()

GAIN Auto gain control

see also is_SetAutoParameter()

FRAMERATE Auto frame rate setting for auto exposure shutter

see also is_SetAutoParameter()

504

76

83

319

21 322

44 294

329

216

317

342

342

206

332

303

303

303

© 2013 Thorlabs GmbH118

DCx Cameras

Parameter Description

[AWB]

WHITEBALANCE Auto white balance

see also is_SetAutoParameter()

Example of a profile file

[DISPLAY]
PIXEL_FORMAT = 0 // 0 = RGB32, see uc480.h for defined formats
RENDER_MODE = 1 // 1 = IS_SET_DM_DIB, 4 = IS_SET_DM_DIRECT3D, see uc480.h for defined render modes
FIT_TO_WINDOW = 1 // 0 = No scaling, 1 = Scale image to window

[TIMING]
PIXELCLOCK = 30 // MHZ
FRAMERATE = 100 // 0 = min, 100 = max
EXPOSURE = 50 // 0 = min, 100 = max

[COLOR]
CORRECTION_FACTOR = 100 // 0 = 0.0, 100 = 1.0
SATURATION_U = 120 // 0 = 0.0, 200 = 2.0
SATURATION_V = 120 // 0 = 0.0, 200 = 2.0

[IMAGE_PARAMETERS]
EDGE_ENHANCEMENT = 0 // 0 = disable, 1 = weak, 2 = strong
GAMMA = 160 // 100 = 1.0, 220 = 2.2

[AES_AGC_AFR]
EXPOSURE = 1 // 1 = on, 0 = off
GAIN = 1 // 1 = on, 0 = off
FRAMERATE = 0 // 1 = on, 0 = off
SPEED = 50 // 0 = min, 100 = max
SKIPFRAMES = 0 // 0 = min, 100 = max

[AWB]
WHITEBALANCE = 1 // 1 = on, 0 = off
SPEED = 50 // 0 = min, 100 = max
SKIPFRAMES = 0 // 0 = min, 100 = max

See also:

"Choose mode" start dialog

"Profiles" menu

303

76

83

© 2013 Thorlabs GmbH

3 Operation

119

3.4.3 uc480 Player

Using the uc480 Player, you can open and play back AVI files, e.g. created with the uc480 Viewer program, in
MJPEG format. Images stored in JPG/BMP format can also be displayed.

The uc480 Player can be accessed as follows: Start > All Programs > uc480 > uc480 Player

Note

Only one instance of the uc480 Player can be opened at a time.

After program start, the uc480 Player will display the following dialog box:

The user interface of the uc480 Player adjusts to the language of the operating system. After the player has
started, only the button for loading a video file is active. How to load a video file will be explained in the following
section.

3.4.3.1 Loading an AVI file

After clicking the button, the "Open File" dialog box opens where you can select one or more files to be opened.
If you select multiple files, they will be played back one after the other in alphabetical order.

Alternatively, AVI files can also be opened and played back simply by drag and drop. To do this, drag the files with
the left mouse button pressed into the uc480 Player dialog box; then, release the mouse button.

Once the required file has been opened, another window for the video film appears on top of the uc480 Player. You
can move this window freely around the screen, independently of the player window.

When you place the mouse pointer inside the video window, its display changes to a small magnifying glass and
the zoom function of the uc480 Player is enabled. Using the left mouse button, you can now select an area within
the video image that will be resized to fill the window (Zoom In), even during playback. Double-clicking the left
mouse button inside the window will revert the display to its original size (Zoom Out).

75

© 2013 Thorlabs GmbH120

DCx Cameras

3.4.3.2 Overview of the Operation Controls

The buttons in the uc480 Player user interface are for the most part self-explanatory and are based on the keys
and symbols of a standard video recorder.

Reverse: play video backwards

Play: play video forwards

Stop: stop playing the video (symbol appears after you click the Play button). The last frame will
be frozen.

Jump to start of video

Fast rewind

One frame back

One frame forward

Fast forward

Jump to end of video

Go to specific frame. When you click this button, a small dialog box will open where you can
enter the frame number.

Start Loop mode (blue text)

© 2013 Thorlabs GmbH

3 Operation

121

Stop Loop mode (red text)

Start of playback loop

End of playback loop

Save current frame as BMP file or JPEG file

Print current frame

Sound on/off

Open video file

Close video file

1 Position markers for the defined playback loop

2 Current position in video file

3 Size of the video display window in pixels

4 Current frame number

5 Number of frames in video file

6 Volume control

7 Frame display parameter settings. Each slider can be reset to its default setting by clicking it with
the right mouse button. The settings are also applied to the subsequent files.

8 Current playback speed setting

9 Playback speed in relation to the recording speed from 0.1 to 200 fps. The values are set in
increments.

Using the button, you can jump directly to a specific frame. To do so, enter a numerical value between 1 and
the total number of frames in the video sequence.

122

122

122

© 2013 Thorlabs GmbH122

DCx Cameras

3.4.3.3 Loop Mode

When using the uc480 Player, you can select specific periods of time within the video sequence and play them

back in an endless loop. To do this, click the button. This enables the two icons for marking the start and end
of the playback loop. To select the start position, use the mouse to drag the position marker to the desired start

position in the endless loop and then click the button. Then, set the position marker to the desired end position

using the same method. Click the button to complete defining markers.

3.4.3.4 Video Window and Full Screen Mode

The video window is displayed dynamically. The possible display sizes are determined based on the capture
resolution and the screen resolution.

Note

The video is played back at the same aspect ratio that was used for the capture.

The full screen mode is activated by pressing the keys CTRL+F. In the full screen mode you can control the
playback via the keyboard. You leave the full screen mode by pressing ESC or CTRL+F.

Key combinations in full screen mode

CTRL + F Start/stop full screen mode

ESC Quit full screen mode

CTRL + O Open video file

<- (Arrow key left) One frame back

-> (Arrow key right) One frame forward

Space Start/stop video playback

© 2013 Thorlabs GmbH

3 Operation

123

3.4.4 uc480 Hotpixel Editor

During manufacturing, each DCx camera is tested and calibrated for hot pixels (aka bad pixels), which are caused
by technical reasons (see also Camera basics: Sensor: Hot pixels). In some cases, users may wish o extend
this factory calibration. Using the uc480 Hotpixel Editor, you can now edit the sensor hot pixel list stored in the
camera.

The uc480 Hotpixel Editor can be accessed as follows:

Start > All programs > uc480 > uc480 Hotpixel Editor

After program start, the uc480 Hotpixel Editor shows the following window:

In the toolbar on the top the following functions are provided:

Open camera
Opens the camera that is marked in the camera list.

Close camera
Closes the camera that is marked in the camera list.

Badpixel correction
Turns the hot pixel correction on/off.

Detect Badpixel
Opens the dialog for the automatic hot pixel detection.

Write Badpixel
Writes the list of the hot pixel to the EEPROM.

Add Badpixel
Writes the marked hot pixel in the hot pixel list of the program.

Delete Badpixel
Deletes a hot pixel from the hot pixel list of the program.

28

125

© 2013 Thorlabs GmbH124

DCx Cameras

Highlight
Mark bad pixel with a circle in order to improve localization. Yellow marker stands for a factory calibrated bad
pixel, green marker - for user defined bad pixel.

1:1
Zoom factor of the shown image.

Camera and bad pixel list

Tab Camera List:

Recognized cameras are shown with status in the camera list. Via the context menu (right click to the appropriate
camera), a camera can be opened and closed. Cameras with the status "in use" cannot be opened.

Tab Badpixel List:

In the bad pixel list the coordinates and the class of bad pixels are displayed.

Class "user": added by the user

Class "ignore": factory calibrated hot pixels

Magnifier function

The magnifier allows to exactly mark hot pixels. "Value" displays the relative pixel intensity.

Camera properties

Here, the camera settings can be changed for a better hot pixels visualization. By default, exposure time is set to
max. and master gain to 50. Note that the frame rate is limited to lower values.

© 2013 Thorlabs GmbH

3 Operation

125

Detecting hot pixel automatically

 opens the "Badpixel detection" dialog. Bad pixels are detected and can be added to the "user" class
list.

"Threshold": Any pixel with an intensity exceeding that threshold will be recognized as a bad (hot) pixel, where
the threshold is is the minimum intensity difference to the reference intensity. The reference is the averaged over
the most recent 10 frames total pixel intensities. Threshold can be set between 5 and 255.

The "Clear old badpixel list" option removes the old user list before the search.

Note

The number of bad pixels, stored to the EEPROM, is limited. If the number of detected bad pixels exceeds the
memory capacity, please increase the bad pixel detection threshold and repeat the detection procedure.

© 2013 Thorlabs GmbH126

DCx Cameras

4 Programming (SDK)
In addition to the drivers, the uc480 software Development Kit (SDK) includes the uc480 Camera Manager , the
uc480 Viewer and the uc480 API programming interface for creating your own DCx programs under Windows
and Linux. Numerous demo applications make it easy for you to get started with programming. The uc480 API
offers you over 150 commands with which you can access all the parameters and functions of your DCx camera.
This chapter contains all the information you need to integrate the DCx camera in your own applications using the
uc480 API.

Note

Older Functions

We are continuously extending and enhancing the uc480 API. The resulting product upgrades sometimes require
replacing obsolete functions with new ones. If it is necessary to continue working with the older functions, it is
possible to add the uc480_deprecated.h header file additionally to the ueye.h header file. The
uc480_deprecated.h header file contains all obsolete function definitions and constants which are no longer
part of the ueye.h header file.

See also:

First steps to uc480 programming

How to proceed

Function descriptions

AVI function descriptions

Obsolete functions

Programming notes

Lists

67

75

127

129

155

359

379

451

454

© 2013 Thorlabs GmbH

4 Programming (SDK)

127

4.1 First Steps to uc480 Programming
This chapter shows the most important functions of the uc480 API for integrating your camera into your own
applications. You will find comprehensive lists of the API functions, sorted by task, in the How to proceed
chapter.

The uc480 SimpleLive and uc480 SimpleAcquire C++ programming samples included in the SDK illustrate the
steps described below.

For information on required include files (uc480 API and header) see Programming notes chapter.

Select a display mode

The uc480 API provides different modes you can use to display the camera's images on the PC. To
quickly show a live image under Windows, it is easiest to use the Direct3D mode . Under Linux the
OpenGL mode can be used.

This mode has the advantage that no image memory has to be allocated, and that image capture is
handled by the driver. Call is_SetDisplayMode() to select the display mode. You can then
customize the Direct3D mode by using is_DirectRenderer() .

For advanced users:

You can also access the image data directly by selecting the Bitmap (DIB) mode. To use DIB mode,
you first have to allocate one or more memories by using is_AllocImageMem() , add them to a
memory sequence , if required, and then activate a memory with is_SetImageMem() before
each image capture. To show the image on-screen, call the is_RenderBitmap() function after
each completed image capture. From the events or messages you can see when an image is
available for display.

See also:

How to proceed: Display mode selection

Capture images

Recording live images with the DCxCamera is very simple. Just call the is_CaptureVideo()
function and the camera captures the live images at the default frame rate. To capture single frames,
use the is_FreezeVideo() function. Every DCx camera of course also provides different trigger
modes for image capture. Use is_SetExternalTrigger() to activate the desired mode before
starting the image capture.

See also:

How to proceed: Image capture

Adjust the frame rate, brightness and colors

To change the frame rate, for example, you call is_SetFrameRate() . With is_SetColorMode
() you set the color mode. Image brightness is adjusted through the exposure time set with
is_Exposure() . You can also implement automatic control of image brightness and other
parameters by using is_SetAutoParameter() .

If you are using a color camera, you should activate color correction in order to achieve rich vibrant
colors for on-screen display (is_SetColorCorrection()). To adapt a color camera to the
ambient light conditions, it is essential to carry out white balancing. This is also done using the
is_SetAutoParameter() function.

See also:

How to proceed: Setting camera parameters

Save an image

Use the is_ImageFile() function to save the current image as a BMP or JPEG file. To save a
specific image, it is better to use the Snap function (single frame mode) than the Live function
(continuous mode).

See also:

How to proceed: Saving images and videos

Close the camera

When you want to exit your application, close the camera with is_ExitCamera() . The camera
and the allocated memory are automatically released. All previously set camera parameters will be lost,

129

451

21

21

322

198

157

132 337

297

141

133

177

223

327

134

329

319

216 147

303

317

303

144

264

149

213

© 2013 Thorlabs GmbH128

DCx Cameras

however. So, if you want to save specific settings, use the is_ParameterSet() function before
closing the camera. The next time you start the application, you can simply load the settings again by
using the same function.

292

© 2013 Thorlabs GmbH

4 Programming (SDK)

129

4.2 How to Proceed
This chapter shows function blocks and workflows for important camera functions. The charts are structured as
follows:

Hint

Click the function names in the flowcharts to open the corresponding function description!

4.2.1 Preparing Image Capture

Querying information : Before you open one or more DCx Cameras, we recommend querying some key
information.

Opening and closing a camera

Allocating an image memory : This is necessary if you want to access image memory contents or if you are
not using Direct3D or OpenGL for image display.

Creating an image memory sequence is required when capturing live images.

4.2.1.1 Querying Information

It is recommended to query the following important information before opening one or more DCx Cameras.

is_GetNumberOfCameras() Determines the number of cameras connected to the system.

is_GetCameraList() Returns information on all connected cameras.

It is also very useful to have the message boxes for error output enabled during the programming process

is_SetErrorReport() Enables/disables dialog messages for error output.

With the following functions, you can read out additional information on cameras and software.

is_CameraStatus() Returns the event counters and other information.

Enables standby mode.

is_GetCameraInfo() Returns the camera information of an opened camera.

is_GetDLLVersion() Returns the version of the uc480_api.dll.

is_GetOsVersion() Returns the operating system version.

129

130

130

132

249

233

326

172

231

238

250

© 2013 Thorlabs GmbH130

DCx Cameras

4.2.1.2 Opening and Closing the Camera

The following functions are required to open and close a DCx camera.

is_InitCamera() Hardware initialization

is_ExitCamera() Closes the camera and releases the created image memory.

When multiple cameras are used on one system you should assign every camera a unique camera ID.

is_SetCameraID() Sets a new camera ID.

4.2.1.3 Allocating Image Memory

When you are programming an application that

requires direct access to the image data in stored in memory, or

uses Bitmap mode (DIB) for display

use the following functions to allocate and manage image memories (see also Quick start: Image display).

is_AllocImageMem() Allocates an image memory.

is_SetAllocatedImageMem
()

The user provides pre-allocated memory for image capturing.

is_FreeImageMem() Releases an allocated image memory.

An image memory has to be activated before each image capture:

is_SetImageMem() Makes an image memory active.

To query image memory information and access the data in the image memories, you can use these functions:

is_CopyImageMem() Copies the image to the user-defined memory.

is_CopyImageMemLines() Copies selected image lines to the user-defined memory.

is_GetActiveImageMem() Returns the number and address of the active image memory.

is_GetImageMem() Returns the pointer to the starting address of the image memory.

is_GetImageMemPitch() Returns the line offset used in the image memory.

is_InquireImageMem() Returns the properties of an image memory.

Note

Image memory sequences should be used for frame sequence capture.

273

213

313

127

157

301

222

337

190

191

225

247

248

279

132

© 2013 Thorlabs GmbH

4 Programming (SDK)

131

Flowchart: Allocating memory

Click in the figure to get help on the functions.

© 2013 Thorlabs GmbH132

DCx Cameras

4.2.1.4 Image Memory Sequences

When you are capturing and displaying frame sequences (e.g. live display), it is advisable to provide appropriate
image memory sequences. The uc480 driver offers a set of easy-to-use features for this purpose. For example, the
system automatically cycles through the specified sequence of image memories and can generate an event
when it reaches the end of a sequence cycle.

Before you can use a memory sequence, you have to allocate the relevant image memories (see Allocating image
memory).

is_AddToSequence() Adds image memory to the sequence list.

is_ClearSequence() Deletes the entire sequence list.

is_GetActSeqBuf() Determines the image memory currently used for the sequence.

is_SetImageMem() Makes the indicated image memory the active memory.

is_LockSeqBuf() Protects the sequence image memory from being overwritten.

is_UnlockSeqBuf() Releases the sequence image memory for overwriting.

141

130

156

179

226

337

289

354

© 2013 Thorlabs GmbH

4 Programming (SDK)

133

4.2.2 Selecting the Display Mode

Note

The uc480 driver provides different modes for displaying the captured images. We recommend using the Bitmap
mode or the Direct3D functions (only Windows) or OpenGL functions, depending on your specific application.

For further information on the different display modes, see Basics: Image display modes .

Select the desired mode. The display mode has to be set before you start image capture.

is_SetDisplayMode() Selection of the display mode.

When Bitmap mode (DIB) is active, image display has to be called explicitly for each image.

is_RenderBitmap() Outputs the contents of the active image memory to a window.

is_SetDisplayPos() Enables offsetting the image output inside the window.

Flowchart: Image display in DIB mode

Click in the figure to get help on the functions.

21

322

297

325

© 2013 Thorlabs GmbH134

DCx Cameras

4.2.3 Capturing Images

DCx Cameras support the capture of single frames (snap) and frame sequences (live) in trigger mode and
untriggered (freerun) mode. Select the image capture mode that best meets your application requirements.

Using events or messages , the uc480 driver can provide information to an application, e.g. about the
completion of image capture. You will need events and messages, for example, when you are using image
memory sequences.

4.2.3.1 Image Capture Modes

For more information on the capture modes of the DCx Cameras see also Camera basics: Freerun and
Camera basics: Trigger .

Freerun mode

In freerun mode, the camera sensor captures one image after another at the set frame rate. Exposure of the
current image and readout/transfer of the previous image data are performed simultaneously. This allows the
maximum camera frame rate to be achieved. The frame rate and the exposure time can be set separately. The
captured images can be transferred one by one or continuously to the PC.

If trigger mode is active, you need to disable it with is_SetExternalTrigger() before activating freerun
mode.

Single frame mode (snap mode)
When is_FreezeVideo() is called, the next image exposed by the sensor is transferred. You cannot use
the DCxCamera flash outputs in this mode.

Continuous mode (live mode)
When is_CaptureVideo() is called, images are captured and transferred continuously. You can use the
DCxCamera flash outputs.

Trigger mode

In trigger mode, the sensor is on standby and starts exposing on receipt of a trigger signal. A trigger event can be
initiated by a software command (software trigger) or by an electrical signal via the camera’s digital input (hardware
trigger). For the specifications of the electrical trigger signals, see the Specifications: Electrical specifications
chapter.

The trigger mode is selected using is_SetExternalTrigger() .

Software trigger mode
When this mode is enabled, calling is_FreezeVideo() immediately triggers the capture of an image and
then transfers the image to the PC. If is_CaptureVideo() is called, the triggering of image capture and the
transfer of images are performed continuously.

Hardware trigger mode
When this mode is enabled, calling is_FreezeVideo() makes the camera ready for triggering just once.
When the camera receives an electrical trigger signal, one image is captured and transferred.
If you call is_CaptureVideo() , the camera is made ready for triggering continuously. An image is captured
and transferred each time an electrical trigger signal is received; the camera is then ready for triggering again
(recommended procedure).

Freerun synchronization
In this mode, cameras running in freerun mode (live mode, see above) can be synchronized with an external
trigger signal. The cameras still remain in freerun mode. The trigger signal stops and restarts the current image
capture process. You can use this mode to synchronize multiple cameras that you are operating in the fast live
mode. Not all camera models support this mode (see is_SetExternalTrigger()).

Notes

The freerun synchronization mode is currently not supported by DCx Cameras.

In trigger mode, the maximum frame rate is lower than in freerun mode because the sensors expose and
transfer sequentially. The possible frame rate in trigger mode depends on the exposure time.

Example: At the maximum exposure time, the frame rate is about half as high as in freerun mode; at the
minimum exposure time, the frame rate is about the same.

134

141

132

17

19

327

223

177

487

327

223

177

223 223

177

327

© 2013 Thorlabs GmbH

4 Programming (SDK)

135

Overview on image capture modes

Image
capture

Trigger Function calls

Allowed flash
modes

Frame rate
Standard Global

Start

Continuous

Off

is_SetExternalTrigger
(OFF)

is_CaptureVideo()
X Freely selectable

Software

is_SetExternalTrigger
(SOFTWARE)

is_CaptureVideo()
X X

Depending on exposure time
and trigger delay

Hardware

is_SetExternalTrigger
(e.g. HI_LO)

is_CaptureVideo()
X X

Depending on exposure time
and trigger delay

Freerun
sync.

is_SetExternalTrigger
(e.g. HI_LO_SYNC)

is_CaptureVideo()
X Freely selectable

Single
frame

Off

is_SetExternalTrigger
(OFF)

is_FreezeVideo()
Freely selectable

Software

is_SetExternalTrigger
(SOFTWARE)

is_FreezeVideo()
X X

Depending on exposure time
and trigger delay

Hardware

is_SetExternalTrigger
(e.g. HI_LO)

is_FreezeVideo()
X X

Depending on exposure time
and trigger delay

Timeout values for image capture

When you call is_FreezeVideo() or is_CaptureVideo() , the timeout value for the image capture is
determined from the Wait parameter. If no image arrives within this timeout period, a timeout error message is
issued. Under Windows, a dialog box is displayed if you have enabled error reports (see is_SetErrorReport()

). Information on the error cause can be queried using is_CaptureStatus() .

327

177

327

177

327

177

327

177

327

223

327

223

327

223

223 177

326 386

© 2013 Thorlabs GmbH136

DCx Cameras

The following table shows the effect of the Wait parameter depending on the image capture mode:

Parameter Wait Image capture
mode

Function
returns

Timeout for 1st image Timeout for subsequent
images*1

IS_DONT_WAIT HW trigger Immediately API default or user-defined
value*3

API default or user-defined
value*3

IS_WAIT HW trigger When 1st image
in memory

API default or user-defined
value*3

API default or user-defined
value*3

Time t

Value range
[4…429496729]

HW trigger When 1st image
in memory

Time t in steps of 10 ms

(40 ms to approx. 1193 h)

API default or user-defined
value*3

IS_DONT_WAIT Freerun/SW
trigger

Immediately Calculated internally by API*2 Calculated internally by API*2

IS_WAIT Freerun/SW
trigger

When 1st image
in memory

Calculated internally by API*2 Calculated internally by API*2

Time t

Value range
[4…429496729]

Freerun/SW
trigger

When 1st image
in memory

Time t in steps of 10 ms

(40 ms to approx. 1193 h)
Calculated internally by API*2

*1 Only with continuous image capture using is_CaptureVideo()

*2 The timeout is calculated from the exposure time setting, the image transfer time (depending on the pixel clock)
and the optional trigger delay (see is_SetTriggerDelay()); it is at least 40 ms.

*3 The default value of the uc480 API is 60 s. User-defined values can be set using the is_SetTimeout()
function.

Function list

is_CaptureVideo() Captures a live video.

is_FreezeVideo() Captures an image and writes it to the active image memory.

is_ForceTrigger() Forces image capture in hardware trigger mode.

is_HasVideoStarted() Returns whether the capture process has been started or not.

is_IsVideoFinish() Returns whether the capture process has been terminated or not.

is_SetSensorTestImage() Enables test image output from sensor (all cameras).

is_StopLiveVideo() Terminates the capturing process (live video or single frame).

352

350

177

223

221

259

288

345

353

© 2013 Thorlabs GmbH

4 Programming (SDK)

137

Flowchart: Single Capture

Click in the figure to get help on the functions.

Flowchart - Single Capture (1 of 2)

© 2013 Thorlabs GmbH138

DCx Cameras

Flowchart - Single Capture (2 of 2)

© 2013 Thorlabs GmbH

4 Programming (SDK)

139

Flowchart: Sequence Capture

Flowchart - Capturing a frame sequence (1 of 2)

© 2013 Thorlabs GmbH140

DCx Cameras

Flowchart - Capturing a frame sequence (2 of 2)

© 2013 Thorlabs GmbH

4 Programming (SDK)

141

4.2.3.2 Event / Message Handling

Triggering events for single frame capture

The following figure shows the time sequence when triggering the IS_SET_EVENT_EXTTRIG and
IS_SET_EVENT_FRAME events. The camera is prepared for triggered capture using the
is_SetExternalTrigger() command. An incoming trigger signal at the camera starts the exposure and the
subsequent image transfer. Upon completion of the data transfer, the IS_SET_EVENT_EXTTRIG event signals that
the camera is ready for the next capture. The IS_SET_EVENT_FRAME event is set once pre-processing (e.g. color
conversion) is complete and the finished image is available in the user memory.

Note

The following illustrations show a schematic view of the image capture sequence. The sensor exposure and
readout times and the transmission times depend on the camera settings. The pre-processing time depends on the
API functions you are using (e.g. color conversion, edge enhancement).

* Optional function. The start time and duration of the flash signal are defined by the "Flash delay" and "Duration"
parameters (see is_IO()).

Events in live mode (image sequence)

The following figure shows the time sequence when triggering the IS_SET_EVENT_FRAME and IS_SET_EVENT_SEQ
events. The camera is set to live mode using is_CaptureVideo() so that it continuously captures frames.
The IS_SET_EVENT_FRAME event is set once pre-processing (e.g. color conversion) is complete and a finished image
is available in the user memory. The IS_SET_EVENT_SEQ event is set after one cycle of a storing sequence has been
completed (see also is_AddToSequence()).

* Optional function. The start time and duration of the flash signal are defined by the "Flash delay" and "Duration"
parameters (see is_IO()).

327

280

177

156

280

© 2013 Thorlabs GmbH142

DCx Cameras

Function List

is_DisableEvent() Disables a single event object.

is_EnableEvent() Enables a single event object.

is_EnableMessage() Turns the Windows messages on/off.

is_ExitEvent() Closes the event handler (Windows only)

is_InitEvent() Initializes the event handler (Windows only)

is_EnableAutoExit() Automatically releases the camera resources when the camera is disconnected
from the PC.

is_WaitEvent() Waits for DCxCamera events (Linux only)

Flowchart: Enable events

Click in the figure to get help on the functions.

205

209

211

214

276

208

355

© 2013 Thorlabs GmbH

4 Programming (SDK)

143

Flowchart: Enabling Messages

© 2013 Thorlabs GmbH144

DCx Cameras

4.2.4 Setting Camera Parameters

Setting and getting parameters : Using these functions, you can make settings for the camera and for image
capture and preprocessing.

The DCxCamera's automatic image control features allow automatically adjusting image brightness and
image color to changing ambient conditions.

Image preprocessing : These functions specify e.g. how color images are processed after image capture.

Querying the camera status : With these functions, you can query additional useful information on the camera
status.

Using the camera EEPROM : All DCx Cameras have a non-volatile EEPROM where you can save the camera
settings or any other information.

4.2.4.1 Setting and Getting Parameters

Capture parameters

This set of functions specifies the camera's image capture parameters, such as exposure, pixel clock and frame
rate:

is_ColorTemperature() Sets the color temperature

is_Exposure() Returns the adjustable exposure range.

is_GetFramesPerSecond() Returns the current frame rate in live mode.

is_GetFrameTimeRange() Returns the adjustable frame rate range.

is_PixelClock() Returns the adjustable pixel clock range.

is_SetAutoParameter() Enables/disables automatic imaging functions.

is_Blacklevel() Turns black level correction on / off.

is_Exposure() Sets the exposure time.

is_SetFrameRate() Sets the frame rate.

is_SetGainBoost() Sets additional sensor hardware gain boost.

is_SetGamma() Sets the gamma value (digital post-processing).

is_SetHardwareGain() Enables the sensor hardware gain.

is_SetHWGainFactor() Sets the sensor hardware gain factor.

is_PixelClock() Sets the pixel clock frequency.

is_ResetToDefault() Resets the camera parameters to its default values.

Image geometry

This set of functions lets you influence the image geometry for image capture, e.g. the area of interest:

is_ImageFormat() Sets a predefined image size

is_AOI() Sets the size and position of an area of interest (AOI)
or of a reference AOI for auto imaging functions.

is_SetBinning() Sets the binning modes.

is_SetRopEffect() Makes real-time geometry changes to an image (Rop =
raster operation)

is_SetSensorScaler() Scales the image in the camera

is_SetSubSampling() Sets the subsampling modes.

Processing image data

The following set of functions refers to the further processing of image data in the PC:

is_GetColorDepth() Determines the desktop color mode set in the graphics
card.

is_GetTimeout() Returns the user-defined timeout values.

144

147

148

148

148

180

216

240

241

294

303

170

216

329

331

332

333

335

294

299

267

159

310

340

343

347

237

256

© 2013 Thorlabs GmbH

4 Programming (SDK)

145

is_HotPixel() Enables and configures the hot pixel correction.

is_SetColorConverter() Selects Bayer conversion mode.

is_SetColorCorrection() Sets color correction.

is_SetColorMode() Selects a color mode.

is_Convert() Conversion parameters for raw Bayer conversion.

is_EdgeEnhancement() Sets edge enhancement.

is_SetSaturation() Sets the image saturation (digital post-processing).

is_SetSensorTestImage() Enables test image output from sensor.

is_SetTimeout() Sets user-defined timeout values.

260

315

317

319

188

206

342

345

350

© 2013 Thorlabs GmbH146

DCx Cameras

Flowchart: Changing camera timing

Click in the figure to get help on the functions.

© 2013 Thorlabs GmbH

4 Programming (SDK)

147

4.2.4.2 Automatic Image Control

The uc480 driver provides various options to automatically adjust the image capture parameters to the lighting
situation. All controls are configured using the is_SetAutoParameter() SDK function.

For more information on the automatic image control see Camera basics: Automatic image control .

Flowchart: Enable Auto Brightness

Click in the figure to get help on the functions.

303

45

© 2013 Thorlabs GmbH148

DCx Cameras

4.2.4.3 Image Pre-processing

Bayer conversion

The following functions enable and adjust the Bayer conversion (see Color filter (Bayer filter)).

is_Convert() Converts a Bayer raw image into the desired output format

is_GetColorConverter() Returns the currently set Bayer conversion mode

is_SetBayerConversion() Sets the algorithm for Bayer conversion

is_SetColorConverter() Sets the algorithm for Bayer conversion in the camera (not applicable for DCx
Cameras)

Lookup table

Using lookup table (LUT) functions, you can e. g. adjust brightness or contrast after the acquisition.

is_GetCameraLUT() Read out current hardware LUT

is_GetImageHistogram() Computes a histogram for the image buffer passed to the function

4.2.4.4 Get Camera Status

Using these functions, you can read out additional useful information on the camera status.

is_CameraStatus() Returns the event counters and other information.

Enables standby mode.

is_GetAutoInfo() Returns status information on the auto features.

is_GetCameraList() Returns information on all connected cameras.

is_GetCameraType() Returns the camera type.

is_CaptureStatus() Displays information on errors that have occurred.

is_GetError() Displays errors that have occurred.

is_GetUsedbandwidth() Returns the bus bandwidth (in Mbyte/s) currently used by all
initialized or selected cameras.

is_GetVsyncCount() Returns the VSYNC counter. It will be incremented by 1 each time
the sensor starts capturing an image.

is_SetErrorReport() Enables/disables dialog messages for error output.

4.2.4.5 Using the Camera EEPROM

The non-volatile EEPROM of every DCx camera can hold user data or camera settings.

is_GetCameraInfo() Returns the factory-set information (e.g. revision information for the
individual DCxCamera components).

is_GetSensorInfo() Returns the sensor information.

is_ReadEEPROM() Reads out the writable data area of the EEPROM.

is_WriteEEPROM() Writes user data to the EEPROM.

26

188

236

420

315

235

242

172

227

233

385

174

239

257

258

326

231

251

296

358

© 2013 Thorlabs GmbH

4 Programming (SDK)

149

4.2.5 Saving Images and Videos

Using the uc480 API, you can

Save and load single frames

Capture an AVI frame sequence

4.2.5.1 Saving and Loading Single Frames

With the is_ImageFile() function you can save the image data of the current image memory to a BMP, PNG
or JPG file, and load saved image data into an image memory.

4.2.5.2 Capturing AVIs

The functions of the uc480_tools.dll enable you to save images captured with the DCxCamera as sequences
to an AVI file. In order to reduce the file size, the single frames are stored in the AVI container using an adjustable
JPEG compression. It is possible to extract single frames from the AVI file.

AVI Capture Workflow

First initialize the AVI interface and then create a empty AVI file.

isavi_InitAVI() Initializes the AVI interface.

isavi_ExitAVI() Terminates and closes the AVI interface.

isavi_OpenAVI() Opens an AVI file for capturing.

isavi_CloseAVI() Closes an AVI file.

isavi_GetAVIFileName() Returns the name of the current AVI file.

The following settings should also be done prior to starting the recording.

isavi_SetFrameRate() Sets the frame rate of the AVI video.

isavi_SetImageQuality() Sets the compression level/image quality of the AVI video.

isavi_SetImageSize() Sets the size and offset of the input image memory.

Once the AVI file has been created, captured images are placed in a buffer. Then, the images are compressed and
added to the AVI file which is stored on the hard disk. These operations are not performed in the same thread as
the capturing process. If you capture more images while a compression or write operation is in progress, the new
images will be discarded.

isavi_StartAVI() Starts AVI recording.

isavi_AddFrame() Adds a compressed image to the AVI file.

isavi_StopAVI() Stops AVI recording.

With these functions, you can query additional information on the ongoing recording.

isavi_GetAVISize() Returns the size of the current AVI file.

isavi_GetnCompressedFrames() Returns the number of frames in the current AVI file.

isavi_GetnLostFrames() Returns the number of frames that have been discarded so far.

isavi_ResetFrameCounters() Resets the counters for discarded and saved frames to 0.

Events can be used to get signalled when a frame was added.

isavi_DisableEvent() Disables a AVI event.

isavi_EnableEvent() Enables a AVI-Event.

isavi_ExitEvent() Turns off AVI event handling.

isavi_InitEvent() Turns on AVI event handling.

Supported color formats

The supported input color formats are RGB32, RGB24, Y8 and raw Bayer. The output file will always be in RGB24
format, regardless of the input data format. You can adjust the size of the images to be stored by defining a freely
selectable area of interest (AOI).

149

149

264

369

362

371

360

364

374

375

376

377

359

378

366

367

368

373

360

361

363

370

© 2013 Thorlabs GmbH150

DCx Cameras

Capture speed

The possible speed of capture depends on the selected color format, the image size and the compression level of
the AVI file as well as the PC performance.

Playback in external applications

AVI files you have captured using the uc480_tools.dll can also be played back in external applications, such
as Windows Media Player. To do this, you need to install the uc480 MJPEG codec on your system:

Open the uc480 installation directory (default: C:\Program Files\Thorlabs\DCx Cameras\Tools32 or
C:\Program Files\Thorlabs\DCx Cameras\Tools64).

Right-click the uc480Mjpeg.inf (uc480Mjpeg_64.inf) file.

Select "Install". The codec is installed automatically.

In player or recording software, the codec will show up as "Intermedia-X MJPEG Codec".

© 2013 Thorlabs GmbH

4 Programming (SDK)

151

Flowchart: AVI capture

Click in the figure to get help on the functions.

© 2013 Thorlabs GmbH152

DCx Cameras

4.2.6 Using Inputs and Outputs

Depending on the model, DCx Cameras have one or more digital inputs and outputs designed for different
purposes.

Input/output control : Here, you will find functions for setting the DCxCamera's I/Os and for using the trigger
and flash modes.

4.2.6.1 Input/Output Control

With these functions you can use the camera's digital in-/outputs for trigger and flash control.

is_SetExternalTrigger() Enables the digital input for trigger operation or returns the applied
signal level.

is_IO() Sets the digital output for flash control or a static output level.

is_IO() Sets the delay and power-on time of the flash output.

is_SetTriggerDelay() Sets the trigger signal delay time.

is_IO() Determines the delay and power-on times of the flash output to
obtain a global shutter effect when using rolling shutter sensors.

is_ForceTrigger() Simulates a trigger signal in hardware trigger mode.

With these commands you can activate additional functions or use GPIOs on some DCx Cameras.

is_IO() Sets the additional digital outputs (GPIO).

is_IO() Defines each port as a digital input or output (GPIO).

is_IO() Toggles the color of the status LED for DCU22x and DCC1240x
cameras.

152

327

280

280

352

280

221

280

280

280

© 2013 Thorlabs GmbH

4 Programming (SDK)

153

Flowchart: Digital input

Click in the figure to get help on the functions.

© 2013 Thorlabs GmbH154

DCx Cameras

Flowchart: Digital output

© 2013 Thorlabs GmbH

4 Programming (SDK)

155

4.3 Function Descriptions
To integrate the DCx Cameras into your own programs, you can use the functions and parameters provided by the
uc480 SDK. These are described in this chapter. The descriptions are listed alphabetically by function and are
structured as follows:

USB 2.0

USB 3.0

USB 2.0

USB 3.0

This table shows the availability of the function. For both Windows and Linux the table shows which DCx camera
series supports the function.

Syntax

Prototype of the function from the uc480.h header file.

Description

Description of the function with cross-references to related functions.

Input parameters

Description of the function parameters including their value ranges.

Return value

Description and value range of the return value. If a function returns the IS_NO_SUCCESS (-1) value, you can get
information on the error from the is_GetError() function.

Related functions

List with similar or related SDK functions.

Example

For some functions, C++ programming samples are have been added.

Sample programs

Some descriptions include references to uc480 SDK sample programs. When you install the uc480 software, the
demo applications are copied to the C:\Program Files\Thorlabs\DCx Cameras\Samples directory. The
associated source code can be found under C:\Program Files\Thorlabs\DCx Cameras\Develop
\Source.

All sample programs are described in the uc480 Samples Manual.

451

239

© 2013 Thorlabs GmbH156

DCx Cameras

4.3.1 is_AddToSequence

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_AddToSequence (HIDS hCam, char* pcImgMem, INT nID)

Description

is_AddToSequence() adds an image memory to the list of image memories used for ring buffering. The image
memory must have been previously requested using is_AllocImageMem() . Using the
is_SetAllocatedImageMem() function, you can set a memory that has been allocated before as image
memory. Image memories that are used for ring buffering must all have been allocated with the same color depth
(bits per pixel).

Input parameters

hCam Camera handle

pcMem Pointer to image memory

nID Image memory ID

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_AllocImageMem()

is_InitImageQueue()

is_SetImageMem()

is_SetAllocatedImageMem()

Sample programs

uc480Sequence (C++)

157

301

157

278

337

301

© 2013 Thorlabs GmbH

4 Programming (SDK)

157

4.3.2 is_AllocImageMem

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_AllocImageMem (HIDS hCam, INT width, INT height, INT bitspixel, char** ppcImgMem, INT* pid)

Description

is_AllocImageMem() allocates an image memory for an image having its dimensions defined by width and
height and its color depth defined by bitspixel. The memory size is at least:

size = [width * int((bitspixel + 7) / 8) + adjust] * height (for details on adjust, see
below)

The line increment is calculated as:

line = width * int[(bitspixel + 7) / 8]

lineinc = line + adjust

adjust = 0, if line can be divided by 4 without remainder

adjust = 4 - rest(line / 4), if line cannot be divided by 4 without remainder

To read out the line increment, you can use the is_GetImgMemPitch() function.

The starting address of the memory area is returned in ppcImgMem.

pid returns an ID for the allocated memory. A newly allocated memory is not directly active, i.e. digitised images will
not be stored immediately in this new memory. It must first be made active using is_SetImageMem() .

The returned pointer must be write-protected and may not be altered because it will be used for all further
ImageMem functions. To release the memory, you can use is_FreeImageMem() .

Notes

In the Direct3D or OpenGL modes, image memory allocation is not necessary.

RGB16 and RGB15 require the same amount of memory, but can be distinguished by the bitspixel
parameter. For information on the bit depths of different color formats please refer to the Appendix: Color and
memory formats chapter.

In case the operating system is short of physical memory, today's OS versions swap individual areas of the
RAM that have not been used for some time out to the slower hard disk. This can slow down image capture if
more image memory has been allocated than can be provided by the RAM at a time.

Input parameters

hCam Camera handle

width Image width

height Image height

bitspixel Image bit depth (bits per pixel).

ppcImgMem Returns the pointer to the memory starting address

pid Returns the ID of this memory

248

337

222

502

© 2013 Thorlabs GmbH158

DCx Cameras

Return values

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence and cannot be added
again.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTE
R

Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not supported
for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_
LOCKED

The memory could not be locked. The pointer to the buffer is invalid.

IS_SUCCESS Function executed successfully

Related functions

is_FreeImageMem()

is_AddToSequence()

is_SetImageMem()

is_SetAllocatedImageMem()

is_GetColorDepth()

is_GetImgMemPitch()

222

156

337

301

237

248

© 2013 Thorlabs GmbH

4 Programming (SDK)

159

4.3.3 is_AOI

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_AOI (HIDS hCam, UINT nCommand, void* pParam, UINT nSizeOfParam)

Description

is_AOI() can be used to set the size and position of an area of interest (AOI) within an image. The following
AOIs can be defined:

Image AOI – display of an image portion

Auto Brightness AOI – reference area of interest for automatic brightness control

Auto Whitebalance AOI – reference area of interest for automatic white balance control

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the nSizeOfParam
input parameter.

Note

Previous AOI functions

The is_AOI() function comprises all the functions for setting and positioning an AOI. The following uc480 API
commands are therefore obsolete:

is_SetAOI()

is_SetImageAOI()

is_SetImageSize()

is_SetImagePos()

See also Obsolete functions

AOI for automatic image control

The AOI for automatic brightness control (AES/AGC) and automatic white balance (AWB) defaults to the same size
as the current image (i.e. the image AOI).

After changes to the image geometry (by resetting an image AOI, by binning or subsampling), the AOIs for
automatic image control will always be reset to the image AOI value. This means that it might be necessary to set
the AOIs for auto brightness/auto white balance again manually.

Fast changes of AOI position

Using the IS_AOI_IMAGE_SET_POS_FAST command, you can change the positions of AOIs very quickly.
Executing this command takes just a few milliseconds. When using this command, a few special requirements
have to be met:

The command is currently not supported by all DCx Cameras. With the
IS_AOI_IMAGE_SET_POS_FAST_SUPPORTED command, you can check whether your sensor supports fast
position changes.

Hot pixel correction has to be disabled (see is_HotPixel()).

Image capture is not suspended for fast AOI position changes. As a result, when you call the command, a
number of images might still be transferred with the old AOI position if they were in the driver buffer at that
moment.

Notes

1. Changing the image size

When changing the size of the AOI, please make sure that the selected image memory is large enough. If it
isn't, allocate a new image memory (see is_AllocImageMem()).

Changes to the image size affect the value ranges of the frame rate and exposure time. After executing
is_AOI(), calling the following functions is recommended in order to keep the defined camera settings:

34

414

434

438

435

379

260

157

© 2013 Thorlabs GmbH160

DCx Cameras

o is_SetFrameRate()

o is_Exposure()

o If you are using the flash function: is_IO()

2. Step widths for AOI definition (position grid)

The available step widths for the position and size of image AOIs depend on the sensor. The values defining the
position and size of an AOI have to be integer multiples of the allowed step widths.

For details on the AOI grids of the individual camera models, please see Camera and sensor data.

3. AOI in combination with high frame rates

With very small AOI and therefore high frame rate and maximum possible frame rate set, it is possible that the
USB camera transfers in freerun mode only half frame rates. This is a signal for a camera-internal overload. In this
case it is recommended to set the frame rate to maximum of 98 %.

Multi AOI function of the DCC1240x and DCC3240x models

The sensor of a.m. cameras supports multiple AOIs in one image capture. The AOIs are transferred together as
one image. In this mode you can create 2 or 4 AOIs, which have either the same X axis or the same Y axis (see
also uc480 Viewer: Multi AOI). The sensor is faster in this mode. It is possible to switch the AOI in the horizontal
direction.

Sequence AOI mode for DCC1240x and DCC3240x camera models

A.m. camera models have a special AOI mode. In this mode you can define besides the normal AOI (AOI 1) up to
3 further AOI on the sensor (see uc480 Viewer: Sequence AOI). When activating the sequence mode, note that
only the following combinations are possible:

1. All additional AOIs are off. AOI 1 is always active.

2. AOI 2 (+ AOI 1)

3. AOI 2 and 3 (+ AOI 1)

4. AOI 2, 3 and 4 (+ AOI 1)

It is not possible to have a combination e.g. of AOI 2 and AOI 4.

The parameters of AOI 2, 3 and 4 are defined by the AOI_SEQUENCE_PARAMS structure. In the version 4.20
binning, subsampling and scaler are not supported.

Input parameters

hCam Camera handle

nCommand

IS_AOI_IMAGE_SET_AOI Sets the position and size of the image by using an object of the IS_RECT
type. Sample 1 for AOI

You can define the start position of the AOI in the memory by ORing
IS_AOI_IMAGE_POS_ABSOLUTE with the X or Y position. Sample for setting the
AOI position

IS_AOI_IMAGE_GET_AOI Returns the AOI in an IS_RECT object.

Sample 2 for AOI

IS_AOI_IMAGE_SET_POS Sets the AOI position by using an object of the IS_POINT_2D type.
IS_AOI_IMAGE_POS_ABSOLUTE can be ORed here, as well. Sample for setting
the AOI position

IS_AOI_IMAGE_GET_POS Returns the position in an IS_POINT_2D object.

IS_AOI_IMAGE_SET_SIZE Sets the AOI size by using an object of the IS_SIZE_2D type.

IS_AOI_IMAGE_GET_SIZE Returns the size in an IS_SIZE_2D object.

IS_AOI_IMAGE_GET_POS_MIN Returns the minimum possible position in an IS_POINT_2D object.

IS_AOI_IMAGE_GET_SIZE_MIN Returns the smallest possible size in an IS_SIZE_2D object.

IS_AOI_IMAGE_GET_POS_MAX Returns the maximum possible position in an IS_POINT_2D object.

IS_AOI_IMAGE_GET_SIZE_MAX Returns the largest possible size in an IS_SIZE_2D object.

IS_AOI_IMAGE_GET_POS_INC Returns the increment for the position in an IS_POINT_2D object.

IS_AOI_IMAGE_GET_SIZE_INC Returns the increment for the size in an IS_SIZE_2D object.

IS_AOI_IMAGE_GET_POS_X_ABS
Returns an UINT object indicating whether IS_AOI_IMAGE_POS_ABSOLUTE is

329

216

280

460

112

113

162

164

164

164

164

© 2013 Thorlabs GmbH

4 Programming (SDK)

161

hCam Camera handle

set for the X position. Sample 3 for AOI

IS_AOI_IMAGE_GET_POS_Y_ABS Returns an UINT object indicating whether IS_AOI_IMAGE_POS_ABSOLUTE is
set for the Y position.

IS_AOI_IMAGE_GET_ORIGINAL_AOI Returns the AOI in an IS_RECT object without binning, subsampling or
scaling.

IS_AOI_IMAGE_SET_POS_FAST Allows changing the AOI position very quickly by using an IS_POINT_2D
object. Hot pixel correction has to be disabled (see information above).

IS_AOI_IMAGE_SET_POS_FAST_SUPPORTEDReturns an UINT object indicating whether fast AOI position changes are
supported. The passed variable returns 0 if the function is not supported by
the sensor.

IS_AOI_AUTO_BRIGHTNESS_SET_AOI Sets the AOI for automatic brightness control (similar to
IS_AOI_IMAGE_SET_AOI).

IS_AOI_AUTO_BRIGHTNESS_GET_AOI Returns the AOI for automatic brightness control (similar to
IS_AOI_IMAGE_GET_AOI).

IS_AOI_AUTO_WHITEBALANCE_SET_AOI Sets the AOI for automatic white balance (similar to
IS_AOI_IMAGE_SET_AOI).

IS_AOI_AUTO_WHITEBALANCE_GET_AOI Returns the AOI for automatic white balance (similar to
IS_AOI_IMAGE_GET_AOI).

IS_AOI_MULTI_GET_SUPPORTED_MODES Returns the supported multi AOI modes in an UINT object.

IS_AOI_MULTI_SET_AOI Sets the multi AOI mode. The mode you want to use has to be ORed with
IS_AOI_MULTI_SET_AOI.

The axes are passed in an UINT array:

Array[0] - Array[3] = X1…X4

Array[4] - Array[8] = Y1…Y4

Sample 1 for multi AOI

IS_AOI_MULTI_GET_AOI Returns the set multi AOI mode. The mode that is used has to be ORed
with IS_AOI_MULTI_SET_AOI.

Sample 2 fo multi AOI

IS_AOI_MULTI_MODE_X_Y_AXES Multi AOI mode of the camera models DCC1240x/DCC3240x with up to
AOIs (up to 4 x and y axes). The axes are passed by a UINT array:

array[0] - array[3] = X1…X4

array[4] - array[8] = Y1…Y4

Attention: This parameter has been renamed in version 4.20. In formerly
versions this parameter was named IS_AOI_MULTI_MODE_AXES.

IS_AOI_MULTI_DISABLE_AOI Disables Multi AOI. The mode that is used has to be ORed with
IS_AOI_MULTI_SET_AOI.

Sample 3 for multi AOI

IS_AOI_SEQUENCE_GET_SUPPORT
ED

Returns a bitmask with the supported AOIs (only DCC1240x/DCC3240x
camera models)

Sample 1 for AOI sequence mode

IS_AOI_SEQUENCE_SET_PARAMS Sets the parameters of AOI 2, 3 or 4 (only DCC1240x/DCC3240x
camera models)

Sample 2 for sequence AOI mode

IS_AOI_SEQUENCE_GET_PARAMS Returns the parameters of AOI 2, 3 or 4 (only DCC1240x/DCC3240x
camera models)

Sample 2 for sequence AOI mode

IS_AOI_SEQUENCE_SET_ENABLE Set a bitmask defining which AOIs should be active (only DCC1240x/
DCC3240x camera models).

Note: IS_AOI_SEQUENCE_SET_PARAMS must be called after
IS_AOI_SEQUENCE_SET_ENABLE, with enabling the sequence AOI
mode all AOIs are set to the same value and therefore the parameters are
lost.

Sample 3 for sequence AOI mode

164

165

165

165

165

162

166

162

166

166

© 2013 Thorlabs GmbH162

DCx Cameras

hCam Camera handle

IS_AOI_SEQUENCE_GET_ENABLE Returns the bitmask (only DCC1240x/DCC3240x camera models)

Sample 3 for sequence AOI mode

pParam Pointer to a function parameter, whose function depends on nCommand.

nSizeOfParam Size (in bytes) of the memory area to which pParam refers.

Contents of the IS_RECT structure

INT s32X X position of the AOI

INT s32Y Y position of the AOI

INT s32Width Width of the AOI

INT s32Height Height of the AOI

Contents of the IS_POINT_2D structure

INT s32X X position of the AOI

INT s32Y Y position of the AOI

Contents of the IS_SIZE_2D structure

INT s32Width Width of the AOI

INT s32Height Height of the AOI

Content of the AOI_SEQUENCE_PARAMS structure

INT s32AOIIndex Index of the AOI

INT s32NumberOfCycleRepetitions Number of readout cycles

INT s32X X position of the AOI

INT x32Y Y position of the AOI

Double dblExposure Exposure

INT s32Gain Gain

INT s32BinningMode Binning mode (not supported in version 4.20)

INT s32SubsamplingMode Subsampling mode (not supported in version 4.20)

INT s32DetachImageParameters 0 = every change of the exposure time and the master
gain is copied from AOI 1 to the additional AOIs
(default).
As a change of AOI 1 also reset the exposure time,
this change is also transferred to AOI 2, 3 and 4.

1 = a change of exposure time, gain or position of AOI
1 does not affect the parameters of AOI 2, 3 and 4.

Double dblScalerFactor Scaling factor (not supported in version 4.20)

BYTE byReserved[64] Reserved

166

© 2013 Thorlabs GmbH

4 Programming (SDK)

163

Return values

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence and cannot
be added again.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver has been
loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no camera
connected or initialization error).

IS_CAPTURE_RUNNING A capturing operation is in progress and must be terminated before
you can start another one.

IS_DR_CANNOT_CREATE_SURFACE The image surface or overlay surface could not be created.

IS_DR_CANNOT_CREATE_TEXTURE The texture could not be created.

IS_DR_CANNOT_CREATE_VERTEX_BUFFER The vertex buffer could not be created.

IS_DR_DEVICE_OUT_OF_MEMORY Not enough graphics memory available.

IS_DR_LIBRARY_NOT_FOUND The DirectRenderer library could not be found.

IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to store the image in
the desired format.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match the current
camera model.

IS_INVALID_CAPTURE_MODE The function can not be executed in the current camera operating
mode (free run, trigger or standby).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the versions of
the uc480_api.dll (API) and the driver file (uc480_usb.sys)
do not match.

IS_NO_ACTIVE_IMG_MEM No active image memory available. You must set the memory to
active using the is_SetImageMem() function or create a
sequence using the is_AddToSequence() function.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the buffer is
invalid.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could not be
terminated within the allowable period.

IS_TRIGGER_ACTIVATED The function cannot be used because the camera is waiting for a
trigger signal.

Related functions

is_ImageFormat()

is_SetBinning()

is_SetSubSampling()

267

310

347

© 2013 Thorlabs GmbH164

DCx Cameras

Sample 1 for AOI

// Sets the position and size of the image by using an object of the IS_RECT type.
IS_RECT rectAOI;

rectAOI.s32X = 100;
rectAOI.s32Y = 100;
rectAOI.s32Width = 200;
rectAOI.s32Height = 100;

INT nRet = is_AOI(hCam, IS_AOI_IMAGE_SET_AOI, (void*)&rectAOI, sizeof(rectAOI));

Sample 2 for AOI

// Returns the AOI position and size by using an object of the IS_RECT type.
IS_RECT rectAOI;

INT nRet = is_AOI(hCam, IS_AOI_IMAGE_GET_AOI, (void*)&rectAOI, sizeof(rectAOI));
if (nRet == IS_SUCCESS)
{
 INT x = rectAOI.s32X;
 INT y = rectAOI.s32Y;
 INT width = rectAOI.s32Width;
 INT height = rectAOI.s32Height;
}

Sample 3 for AOI

// Returns an UINT object indicating whether IS_AOI_IMAGE_POS_ABSOLUTE is set for the X position.
UINT nAbsPos = 0;

INT nRet = is_AOI(hCam, IS_AOI_IMAGE_GET_POS_X_ABS, (void*)&nAbsPos , sizeof(nAbsPos));
if (nRet == IS_SUCCESS)
{
 if (nAbsPos == IS_AOI_IMAGE_POS_ABSOLUTE)
 {
 // set
 }
 else if (nAbsPos == 0)
 {
 // not set
 }
}

Examples for setting absolute AOI positions in memory

x = 100
y = 100

AOI without absolute memory positioning

x = 100 | IS_AOI_IMAGE_POS_ABSOLUTE
y = 100

© 2013 Thorlabs GmbH

4 Programming (SDK)

165

AOI with absolute memory positioning on x-axis

x = 100 | IS_AOI_IMAGE_POS_ABSOLUTE
y = 100 | IS_AOI_IMAGE_POS_ABSOLUTE

AOI with absolute memory positioning on x- and y-axis

Sample 1 for multi AOI

// Set Multi AOI. The axes are passed in an UINT array of length 8.
UINT nAxes[8];

nAxes[0] = 100; // Set X1
nAxes[1] = 120; // Set X2
...

INT nRet = is_AOI(hCam, IS_AOI_MULTI_SET_AOI | IS_AOI_MULTI_MODE_X_Y_AXES, (void*)nAxes, sizeof(nAxes));

Sample 2 for multi AOI

// Read Multi AOI
UINT nAxes[8];

INT nRet = is_AOI(hCam, IS_AOI_MULTI_GET_AOI | IS_AOI_MULTI_MODE_X_Y_AXES, (void*)nAxes, sizeof(nAxes));

Sample 3 for multi AOI

// Disable Multi AOI
UINT nAxes[8];

INT nRet = is_AOI(hCam, IS_AOI_MULTI_DISABLE_AOI | IS_AOI_MULTI_MODE_X_Y_AXES, NULL, NULL);

Sample 1 for sequence AOI mode

INT nSequenceAOI = 0;
if (is_AOI(m_hCam, IS_AOI_SEQUENCE_GET_SUPPORTED,
 (void*)&nSequenceAOI, sizeof(nSequenceAOI)) == IS_SUCCESS)
{
 // Sequence AOI 2 is supported
 if ((nSequenceAOI & IS_AOI_SEQUENCE_INDEX_AOI_2) != 0);
}

© 2013 Thorlabs GmbH166

DCx Cameras

Sample 2 for sequence AOI mode

AOI_SEQUENCE_PARAMS Param;

// Set parameters of AOI 2
Param.s32AOIIndex = IS_AOI_SEQUENCE_INDEX_AOI_2;
Param.s32NumberOfCycleRepetitions = 1;
Param.s32X = 100;
Param.s32Y = 200;
...

INT nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_SET_PARAMS, (void*)&Param, sizeof(Param));

// Get parameters of AOI 2
Param.s32AOIIndex = IS_AOI_SEQUENCE_INDEX_AOI_2;

nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_GET_PARAMS, (void*)&Param, sizeof(Param));

Sample 3 for sequence AOI mode

INT nMask = 0;

// Enable AOI 1, Disable AOI 2, 3 and 4
nMask = IS_AOI_SEQUENCE_INDEX_AOI_1;

INT nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_SET_ENABLE, (void*)&nMask, sizeof(nMask));

// Enable AOI 1 and 2
nMask = IS_AOI_SEQUENCE_INDEX_AOI_1 |
 IS_AOI_SEQUENCE_INDEX_AOI_2;

nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_SET_ENABLE, (void*)&nMask, sizeof(nMask));

// Enable AOI 1, 2 and 3
nMask = IS_AOI_SEQUENCE_INDEX_AOI_1 |
 IS_AOI_SEQUENCE_INDEX_AOI_2 |
 IS_AOI_SEQUENCE_INDEX_AOI_3;

nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_SET_ENABLE, (void*)&nMask, sizeof(nMask));

// Enable AOI 1, 2, 3 and 4
nMask = IS_AOI_SEQUENCE_INDEX_AOI_1 |
 IS_AOI_SEQUENCE_INDEX_AOI_2 |
 IS_AOI_SEQUENCE_INDEX_AOI_3 |
 IS_AOI_SEQUENCE_INDEX_AOI_4;

nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_SET_ENABLE, (void*)&nMask, sizeof(nMask));

// Get current AOI mask
INT nRet = is_AOI(m_hCam, IS_AOI_SEQUENCE_GET_ENABLE, (void*)&nMask, sizeof(nMask));

© 2013 Thorlabs GmbH

4 Programming (SDK)

167

4.3.4 is_AutoParameter

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_AutoParameter(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

This functions enables/diisables the auto white balance. With this function, you can require all supported types for
white balance. In addition to the older white balance with the Gray-World algorithm, there is also a color
temperature control according to Kelvin. In addition to the function the supported color spaces are queried and set.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Note

In a later version the is_AutoParameter() function will replace the is_SetAutoParameter() function.
In version 4.20, it is only partly replaced.

Input parameters

hCam Camera handle

nCommand

IS_AWB_CMD_GET_SUPPORTED_TYPES Returns the supported types for auto white balance (Example 1
)

IS_AWB_GREYWORLD: 0x0001

IS_AWB_COLOR_TEMPERATURE: 0x0002

IS_AWB_CMD_GET_TYPE Returns the current set type of the auto white balance
(Example 2)

IS_AWB_GREYWORLD: 0x0001

IS_AWB_COLOR_TEMPERATURE: 0x0002

IS_AWB_CMD_SET_TYPE Sets the type of the auto white balance (Example 2)

IS_AWB_GREYWORLD: 0x0001

IS_AWB_COLOR_TEMPERATURE: 0x0002

IS_AWB_CMD_GET_ENABLE Returns if the auto white balance is enabled (Example 3)

IS_AUTOPARAMETER_DISABLE: 0

IS_AUTOPARAMETER_ENABLE: 1

IS_AUTOPARAMETER_ENABLE_RUNONCE: 2

IS_AWB_CMD_SET_ENABLE Enables/Disables the auto white balance (Example 3)

IS_AUTOPARAMETER_DISABLE: 0

IS_AUTOPARAMETER_ENABLE: 1

IS_AUTOPARAMETER_ENABLE_RUNONCE: 2

IS_AWB_CMD_GET_SUPPORTED_RGB_COLOR_

MODELS
Returns the supported color spaces for the auto white balance
(Example 4)

RGB_COLOR_MODEL_SRGB_D50: 0x0001

RGB_COLOR_MODEL_SRGB_D65: 0x0002

RGB_COLOR_MODEL_CIE_RGB_E: 0x0004

RGB_COLOR_MODEL_ECI_RGB_D50: 0x0008

RGB_COLOR_MODEL_ADOBE_RGB_D65: 0x0010

IS_AWB_CMD_GET_RGB_COLOR_MODEL Returns the current color space for the auto white balance
(Example 5)

303

168

168

168

168

168

169

169

© 2013 Thorlabs GmbH168

DCx Cameras

hCam Camera handle

RGB_COLOR_MODEL_SRGB_D50: 0x0001

RGB_COLOR_MODEL_SRGB_D65: 0x0002

RGB_COLOR_MODEL_CIE_RGB_E: 0x0004

RGB_COLOR_MODEL_ECI_RGB_D50: 0x0008

RGB_COLOR_MODEL_ADOBE_RGB_D65: 0x0010

IS_AWB_CMD_SET_RGB_COLOR_MODEL Sets the color space for the auto white balance (Example 5)

RGB_COLOR_MODEL_SRGB_D50: 0x0001

RGB_COLOR_MODEL_SRGB_D65: 0x0002

RGB_COLOR_MODEL_CIE_RGB_E: 0x0004

RGB_COLOR_MODEL_ECI_RGB_D50: 0x0008

RGB_COLOR_MODEL_ADOBE_RGB_D65: 0x0010

pParam Pointer to a function parameter, whose function depends on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam refers.

Return values

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not supported
for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this function or setting.

IS_SUCCESS Function executed successfully

Related functions

is_SetAutoParameter()

Example 1

UINT nSupportedTypes = 0;
INT nRet = is_AutoParameter(m_hCam,
 IS_AWB_CMD_GET_SUPPORTED_TYPES,
 (void*)&nSupportedTypes,
 sizeof(nSupportedTypes)
);

if (nRet == IS_SUCCESS)
{
 if ((nSupportedTypes & IS_AWB_COLOR_TEMPERATURE) != 0)
 {
 // AWB type "Color Temperature" is supported
 }

 if ((nSupportedTypes & IS_AWB_GREYWORLD) != 0)
 {
 // AWB type "Greyworld" is supported
 }
}

Example 2

UINT nType = 0;

// Read current type
INT nRet = is_AutoParameter(m_hCam, IS_AWB_CMD_GET_TYPE, (void*)&nType, sizeof(nType));

// Write new type
nType = IS_AWB_GREYWORLD;
nRet = is_AutoParameter(m_hCam, IS_AWB_CMD_SET_TYPE, (void*)&nType, sizeof(nType));

Example 3

// Is AWB enabled?
UINT nEnable;
INT nRet = is_AutoParameter(m_hCam, IS_AWB_CMD_GET_ENABLE, (void*)&nEnable, sizeof(nEnable));

// Enable AWB (once)
nEnable = IS_AUTOPARAMETER_ENABLE_RUNONCE;
nRet = is_AutoParameter(m_hCam, IS_AWB_CMD_SET_ENABLE, (void*)&nEnable, sizeof(nEnable));

169

303

© 2013 Thorlabs GmbH

4 Programming (SDK)

169

Example 4

UINT nSupportedRGBColorModels = 0;
nRet = is_AutoParameter(m_hCam,
 IS_AWB_CMD_GET_SUPPORTED_RGB_COLOR_MODELS,
 (void*)&nSupportedRGBColorModels,
 sizeof(nSupportedRGBColorModels)
);

if (nRet == IS_SUCCESS)
{
 if ((nSupportedRGBColorModels & RGB_COLOR_MODEL_SRGB_D50) != 0)
 {
 // Color model SRGB D50 is supported. See uc480.h for color model defines
 }
}

Example 5

UINT nRGBColorModel = 0;
INT nRet = is_AutoParameter(m_hCam,
 IS_AWB_CMD_GET_RGB_COLOR_MODEL,
 (void*)&nRGBColorModel,
 sizeof(nRGBColorModel)
);

nRGBColorModel = RGB_COLOR_MODEL_CIE_RGB_E;

nRet = is_AutoParameter(m_hCam,
 IS_AWB_CMD_SET_RGB_COLOR_MODEL,
 (void*)&nRGBColorModel,
 sizeof(nRGBColorModel)
);

© 2013 Thorlabs GmbH170

DCx Cameras

4.3.5 is_Blacklevel

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_Blacklevel(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Beschreibung

is_Blacklevel() controls the black level correction of the camera which might improve the image quality under
certain circumstances. By default, the sensor adjusts the black level value for each pixel automatically. If the
environment is very bright, it can be necessary to adjust the black level manually.

Black level correction - Auto Black level correction - Auto +
offset

Black level correction with
offset only

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Input parameters

hCam Camera handle

nCommand

IS_BLACKLEVEL_CMD_GET_CAPS Returns the black level feature of the camera (Example 1):

IS_BLACKLEVEL_CAP_SET_AUTO_BLACKLEVEL: The
state of the automatic black level can be changed. The flag
does not indicate whether the camera is running with auto
black level by default or not. For this purpose, use
IS_BLACKLEVEL_CMD_GET_MODE_DEFAULT.

IS_BLACKLEVEL_CAP_SET_OFFSET: The offset can be
changed. The flag does not indicate whether the camera has
set an offset by default or not. For this purpose, use
IS_BLACKLEVEL_CMD_GET_OFFSET_DEFAULT.

IS_BLACKLEVEL_CMD_GET_MODE_DEFAULT Returns the default black level mode (Example2)

IS_BLACKLEVEL_CMD_GET_MODE Returns the current black level mode (Example2)

IS_BLACKLEVEL_CMD_SET_MODE Sets the black level mode (Example 2)

IS_AUTO_BLACKLEVEL_OFF: The automatic black level
mode is switched off.

IS_AUTO_BLACKLEVEL_ON: The automatic black level
mode is switched on.

IS_BLACKLEVEL_CMD_GET_OFFSET_DEFAULT Returns the default offset (Example 3)

IS_BLACKLEVEL_CMD_GET_OFFSET_RANGE Returns the range of the offset (Example 3)

IS_BLACKLEVEL_CMD_GET_OFFSET Returns the current offset (Example 3)

IS_BLACKLEVEL_CMD_SET_OFFSET Sets the offset (Example 3)

pParam Pointer to a function parameter, whose function depends on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam refers.

171

171

171

171

171

171

171

171

© 2013 Thorlabs GmbH

4 Programming (SDK)

171

Return values

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this function or setting.

IS_SUCCESS Function executed successfully

Example 1

INT nBlacklevelCaps;

nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_CAPS,
 (void*)&nBlacklevelCaps, sizeof(nBlacklevelCaps));
if (nRet == IS_SUCCESS) {

 // The user can changed the state of the auto blacklevel
 BOOL bSetAutoBlacklevel = (nBlacklevelCaps & IS_BLACKLEVEL_CAP_SET_AUTO_BLACKLEVEL) != 0;

 // The user can change the offset
 BOOL bSetBlacklevelOffset = (nBlacklevelCaps & IS_BLACKLEVEL_CAP_SET_OFFSET) != 0;
}

Example 2

INT nMode = IS_AUTO_BLACKLEVEL_OFF;

// Get default blacklevel mode
INT nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_MODE_DEFAULT, (void*)&nMode, sizeof(nMode));

// Get current blacklevel mode
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_MODE, (void*)&nMode, sizeof(nMode));

// Set new mode (enable auto blacklevel)
nMode = IS_AUTO_BLACKLEVEL_ON;
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_SET_MODE, (void*)&nMode , sizeof(nMode));

Example 3

INT nOffset = 0;

// Get default blacklevel offset
INT nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_OFFSET_DEFAULT,
 (void*)&nOffset, sizeof(nOffset));

// Get offset range
IS_RANGE_S32 nRange;
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_OFFSET_RANGE, (void*)&nRange, sizeof(nRange));
INT nOffsetMin = nRange.s32Min;
INT nOffsetMax = nRange.s32Max;
INT nOffsetInc = nRange.s32Inc;

// Get current blacklevel offset
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_GET_OFFSET, (void*)&nOffset, sizeof(nOffset));

// Set new offset
nOffset = 100;
nRet = is_Blacklevel(hCam, IS_BLACKLEVEL_CMD_SET_OFFSET, (void*)&nOffset, sizeof(nOffset));

© 2013 Thorlabs GmbH172

DCx Cameras

4.3.6 is_CameraStatus

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

ULONG is_CameraStatus (HIDS hCam, INT nInfo, ULONG ulValue)

Description

Using is_CameraStatus(), you can query and partly set various status information and settings.

Input parameters

hCam Camera handle

nInfo

IS_FIFO_OVR_CNT Number of FIFO overruns. Is increased if image data gets lost because the
USB bus is congested.

IS_SEQUENCE_CNT Returns the sequence count. For is_CaptureVideo() , this parameter is
set to 0. Each time the sequence buffer (image counter) changes, the counter
is increased by 1.

IS_SEQUENCE_SIZE Returns the number of sequence buffers.

IS_EXT_TRIGGER_EVENT_CNT Returns the camera's internal count of external trigger events.

IS_TRIGGER_MISSED Returns the number of unprocessed trigger signals. Is reset to 0 after each
call.

IS_LAST_CAPTURE_ERROR Returns the last image capture error. For a list of all possible error events, see
is_CaptureStatus() .

IS_PARAMETER_SET_1 Indicates whether parameter set 1 including camera settings is present on the
camera (read-only). See also is_ParameterSet() .

Return values:

TRUE Parameter set 1 present

FALSE Parameter set 1 not present

IS_PARAMETER_SET_2 Indicates whether parameter set 2 including camera settings is present on the
camera (read-only). See also is_ParameterSet() .

Return values:

TRUE Parameter set 2 present

FALSE Parameter set 2 not present

IS_STANDBY Sets the camera to standby mode.

Return values:

TRUE Camera changes to standby mode

FALSE The camera changes to freerun mode

IS_STANDBY_SUPPORTED Queries whether the camera supports standby mode (read-only).

Return values:

TRUE The camera supports standby mode

FALSE The camera does not support standby mode

ulValue

IS_GET_STATUS Returns the information specified by nInfo.

179

174

292

292

© 2013 Thorlabs GmbH

4 Programming (SDK)

173

Return values

Only if ulValue = IS_GET_STATUS Returns the information specified by nInfo

When used with
IS_LAST_CAPTURE_ERROR

Returns the last image capture error. For a list of all possible error
events, see is_GetCaptureErrorInfo() .

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_CANT_COMMUNICATE_WITH_DRIVE
R

Communication with the driver failed because no driver has been
loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no camera
connected or initialization error).

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match the current
camera model.

IS_INVALID_EXPOSURE_TIME This setting is not available for the currently set exposure time.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the versions of the
uc480_api.dll (API) and the driver file (uc480_usb.sys) do not
match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this function or setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could not be
terminated within the allowable period.

Related functions

is_GetCameraInfo()

is_GetError()

is_SetErrorReport()

is_SetTriggerCounter()

386

231

239

326

351

© 2013 Thorlabs GmbH174

DCx Cameras

4.3.7 is_CaptureStatus

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_CaptureStatus (HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

The function returns information on errors that occurred during an image capture. All errors are listed that occurred
since the last reset of the function.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Note

The following functions are obsolete by the is_CaptureStatus() function:

is_GetCaptureErrorInfo()

is_ResetCaptureErrorInfo()

See also Obsolete functions .

Input parameters

hCam Camera handle

nCommand

IS_CAPTURE_STATUS_INFO_CMD_GET Returns the CaptureStatus information (Example 1)

IS_CAPTURE_STATUS_INFO_CMD_RESET Resets the CaptureStatus infomation (Example 2)

pParam Pointer to a function parameter, whose function depends
on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

Content of the uc480_CAPTURE_STATUS enumeration

IS_CAP_STATUS_API_NO_DEST_MEM There is no destination memory for copying the finished image.

Possible cause/remedy

Not enough destination memory allocated or all destination buffers
locked by the application.

Release locked destination memory

Allocate more destination memory

Reduce the frame rate so that there is more time to process the
filled destination memory

IS_CAP_STATUS_API_CONVERSION_FAIL
ED

The current image could not be processed correctly.

Possible cause

Internal error during internal processing of the image

IS_CAP_STATUS_API_IMAGE_LOCKED The destination buffers are locked and could not be written to.

Possible cause/remedy

All destination buffers locked by the application

Release locked destination memory

Allocate more destination memory

Reduce the frame rate so that there is more time to process the
filled destination memory

IS_CAP_STATUS_DRV_OUT_OF_BUFFERS No free internal image memory is available to the driver. The image

379

175

176

© 2013 Thorlabs GmbH

4 Programming (SDK)

175

was discarded.

Possible cause/remedy

The computer takes too long to process the images in the uc480
API (e.g. color conversion)

Reduce the frame rate so that there is more time to process the
filled image memory of the driver

Disable resource-intensive API image pre-processing functions
(e.g. edge enhancement, color correction, choose smaller filter
mask for software color conversion)

IS_CAP_STATUS_DRV_DEVICE_NOT_READ
Y

The camera is no longer available. It is not possible to access
images that have already been transferred.

Possible cause

The camera has been disconnected or closed.

IS_CAP_STATUS_USB_TRANSFER_FAILED The image was not transferred over the USB bus.

Possible cause/remedy

Not enough free bandwidth on the USB bus for transferring the
image

Reduce the pixel clock frequency

Operate fewer cameras simultaneously on a USB bus

Check the quality of the USB cabling and components

IS_CAP_STATUS_DEV_TIMEOUT The maximum allowable time for image capturing in the camera
was exceeded.

Possible cause/remedy

The selected timeout value is too low for image capture

Reduce the exposure time

Increase the timeout

Contents of the uc480_CAPTURE_STATUS_INFO structure

DWORD dwCapStatusCnt_Total Returns the total number of errors occurred since the last
reset.

BYTE reserved[60] Reserved for an internal function

DWORD adwCapStatusCnt_Detail[256] This array returns the current count for each possible
error. The possible errors are listed above.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_GetError()

is_CameraStatus()

is_SetErrorReport()

Example 1

uc480_CAPTURE_STATUS_INFO CaptureStatusInfo;
INT nRet = is_CaptureStatus(m_hCam,
 IS_CAPTURE_STATUS_INFO_CMD_GET,
 (void*)&CaptureStatusInfo,
 sizeof(CaptureStatusInfo));

if (nRet == IS_SUCCESS)
{
 UINT nConversionFailed = CaptureStatusInfo.adwCapStatusCnt_Detail[IS_CAP_STATUS_API_CONVERSION_FAILED]);
 UINT nTotalInfos = CaptureStatusInfo.dwCapStatusCnt_Total;
}

239

172

326

© 2013 Thorlabs GmbH176

DCx Cameras

Example 2

INT nRet = is_CaptureStatus(m_hCam,
 IS_CAPTURE_STATUS_INFO_CMD_RESET,
 NULL,
 0);

© 2013 Thorlabs GmbH

4 Programming (SDK)

177

4.3.8 is_CaptureVideo

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_CaptureVideo (HIDS hCam, INT Wait)

Description

is_CaptureVideo() activates the camera's live video mode (free run mode). The driver transfers the images to
an allocated image memory or, if Direct3D/OpenGL is used, to the graphics card. The image data (DIB mode) is
stored in the memory created using is_AllocImageMem() and designated as active image memory using
is_SetImageMem() . Using is_GetImageMem() , you can query the memory address.

If ring buffering is used, the image capturing function cycles through all image memories used for storing the
images of a capture sequence in an endless loop. Sequence memories locked by is_LockSeqBuf() will be
skipped. If the last available sequence memory has been filled, the sequence event or message will be triggered.
Capturing always starts with the first element of the sequence.

For further information on the image capture modes, see the How to proceed: Image capture section.

Input parameters

hCam Camera handle

Wait

IS_DONT_WAIT
Timeout value for image capture (see also the How to
proceed: Timeout values for image capture section)

IS_WAIT

Time t

IS_GET_LIVE Returns if live capture is enabled.

Return values

When used with
IS_GET_LIVE

TRUE if live capture is enabled

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_CANT_COMMUNICATE_WITH_DRI
VER

Communication with the driver failed because no driver has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no camera connected or
initialization error).

IS_CAPTURE_RUNNING A capturing operation is in progress and must be terminated before you
can start another one.

IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to store the image in the
desired format.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match the current camera
model.

IS_INVALID_EXPOSURE_TIME This setting is not available for the currently set exposure time.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the versions of the
uc480_api.dll (API) and the driver file (uc480_usb.sys) do not
match.

IS_NO_ACTIVE_IMG_MEM No active image memory available. You must set the memory to active
using the is_SetImageMem() function or create a sequence using the
is_AddToSequence() function.

157

337 247

289

134

135

© 2013 Thorlabs GmbH178

DCx Cameras

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this function or setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could not be terminated
within the allowable period.

IS_TRIGGER_ACTIVATED The function cannot be used because the camera is waiting for a trigger
signal.

Related functions

is_FreezeVideo()

is_StopLiveVideo()

is_SetExternalTrigger()

is_ForceTrigger()

is_SetTimeout()

is_CaptureStatus()

Sample programs

SimpleLive (C++)

223

353

327

221

350

174

© 2013 Thorlabs GmbH

4 Programming (SDK)

179

4.3.9 is_ClearSequence

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_ClearSequence (HIDS hCam)

Description

is_ClearSequence() removes all image memories from the sequence list that were added using
is_AddToSequence() . After a call of is_ClearSequence(), there is no more active image memory. To
make an image memory the active memory, call is_SetImageMem() .

Input parameters

hCam Camera handle

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SEQUENCE_LIST_EMPTY The sequence list is empty and cannot be deleted.

IS_SUCCESS Function executed successfully

Related functions

is_AddToSequence()

is_FreeImageMem()

is_SetImageMem()

156

337

156

222

337

© 2013 Thorlabs GmbH180

DCx Cameras

4.3.10 is_ColorTemperature

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_ColorTemperature (HIDS hCam, UINT nCommand,
 void *pParam, UINT nSizeOfParam)

Description

Using is_ColorTemperature() you can fix a setting (in kelvins) for the color temperature of an image when you
are using a color camera. The function will use the sensor's hardware gain controls for the setting, as far as
possible. In addition, you can choose between different color spaces. A specific color temperature will result in
slightly differing RGB values, depending on the selected color space.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the nSizeOfParam
input parameter.

The color temperature is the temperature to which a black body radiator has to be heated to glow and give off light
in the corresponding color. Warm light (reddish) has a lower color temperature than cold light (bluish). The
following table lists a few example values:

Light source Color temperature

Light bulb (100 W) 2800

Halogen lamp 3200

Fluorescent lamp (cold white) 4000

Morning and evening sunlight 5000

Noon sunlight 5500-5800

Flash strobe 6000

Overcast daylight 6500-7500

Fog 8000

Note

The is_ColorTemperature() function cannot be used simultaneously with the automatic white balance function
in is_SetAutoParameter() /is_AutoParameter() .

Input parameters

hCam Camera handle

nCommand

Setting the color space

COLOR_TEMPERATURE_CMD_GET_SUPPORTED_RGB_C
OLOR_MODELS

Returns the supported color spaces .

More details

pParam: Pointer to a bit mask of type UINT
The bit mask returns the supported modes, linked by
logical ORs (see Color spaces table).

nSizeOfParam: 4

COLOR_TEMPERATURE_CMD_SET_RGB_COLOR_MODEL Sets a color space .

More details

pParam: Pointer to variable of type UINT that passes
the value to be set.

nSizeOfParam: 4

COLOR_TEMPERATURE_CMD_GET_RGB_COLOR_MODEL Returns the set color space .

303 167

182

182

182

182

© 2013 Thorlabs GmbH

4 Programming (SDK)

181

hCam Camera handle

More details

pParam: Pointer to variable of type UINT returning the
current value.

nSizeOfParam: 4

COLOR_TEMPERATURE_CMD_GET_RGB_COLOR_MODEL
_DEFAULT

Returns the default color space.

More details

pParam: Pointer to variable of type UINT returning the
default value.

nSizeOfParam: 4

Setting the color temperature

COLOR_TEMPERATURE_CMD_SET_TEMPERATURE Sets a color temperature.

More details

pParam: Pointer to variable of type UINT that passes
the value to be set.

nSizeOfParam: 4

COLOR_TEMPERATURE_CMD_GET_TEMPERATURE Returns the set color temperature.

More details

pParam: Pointer to variable of type UINT returning the
current value.

nSizeOfParam: 4

COLOR_TEMPERATURE_CMD_GET_TEMPERATURE_MIN Returns the minimum value for the color temperature.

More details

pParam: Pointer to variable of type UINT returning the
minimum value.

nSizeOfParam: 4

COLOR_TEMPERATURE_CMD_GET_TEMPERATURE_MAX Returns the maximum value for the color temperature.

More details

pParam: Pointer to variable of type UINT returning the
maximum value.

nSizeOfParam: 4

COLOR_TEMPERATURE_CMD_GET_TEMPERATURE_INC Returns the increment for setting the color
temperature.

More details

pParam: Pointer to variable of type UINT returning the
increment.

nSizeOfParam: 4

COLOR_TEMPERATURE_CMD_GET_TEMPERATURE_DEF
AULT

Returns the default value for the color temperature.

More details

pParam: Pointer to variable of type UINT returning the
default value.

nSizeOfParam: 4

pParam Pointer to a function parameter, whose function depends
on nCommand.

nSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

© 2013 Thorlabs GmbH182

DCx Cameras

Color Spaces

RGB_COLOR_MODEL_SRGB_D50 sRGB (standard RGB) color space with a white point of 5000
kelvins (warm light)

RGB_COLOR_MODEL_SRGB_D65 sRGB (standard RGB) color space with a white point of 6500
kelvins (mid daylight)

RGB_COLOR_MODEL_CIE_RGB_E CIE-RGB color space with standard illumination E

RGB_COLOR_MODEL_ECI_RGB_D50 ECI-RGB color space with a white point of 5000 kelvins (warm light)

RGB_COLOR_MODEL_ADOBE_RGB_D65 Adobe RGB color space with a white point of 6500 kelvins (mid
daylight). The Adobe RGB color space is larger than the sRGB color
space, but not all devices can render it.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_SUCCESS Function executed successfully

Related functions

is_SetHardwareGain()

is_AutoParameter()

is_SetAutoParameter()

333

167

303

© 2013 Thorlabs GmbH

4 Programming (SDK)

183

4.3.11 is_Configuration

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_Configuration (UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

Use is_Configuration() to set various system-wide options:

Windows only: Processor operating states (idle states/C-states)
Modern processors have various operating states, so-called C-states, that are characterized by different power
requirements. When the operating system selects an operating state with low power consumption (unequal C0),
the USB transmission efficiency may be affected.
Use the function parameters IS_CONFIG_CPU_IDLE_STATES_CMD… to disable these low power consumption
operating states and improve USB transmission efficiency. The uc480 driver changes the current energy settings
of the operating system when the first USB DCx camera is opened. After the last USB DCx camera is closed, the
uc480 driver restores the original settings. The settings are valid for the current user only.

Windows only: Activate OpenMP (Open Multi-Processing)
OpenMP is a programming interface that supports distributed computing on multi-core processors. When you
activate OpenMP support, intensive computing operations, such as the Bayer conversion , are distributed
across several processor cores to accelerate execution. The use of OpenMP, however, increases CPU load.

Load camera parameters during installation
Use the function parameters IS_CONFIG_INITIAL_PARAMETERSET… to indicate whether to apply the
parameters stored on the camera automatically when opening the camera. You must first store the camera
parameters on the camera using the is_ParameterSet() function or via the corresponding function in the
uc480 demo . This setting applies to all connected cameras. If no parameters are stored on the camera, the
standard parameters of this camera model are applied.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Note

Settings for processor operating states: The settings for processor operating states are available only on
Windows operating systems.

Input parameters

hCam Camera handle

nCommand

IS_CONFIG_CMD_GET_CAPABILITIES Returns the configuration options supported by the
system.

Additional information

pParam: Pointer to a UINT bitmask. The status flags
from CONFIGURATION_CAPS are returned in the
bitmask.

nSizeOfParam: 4

Example 1

IS_CONFIG_CPU_IDLE_STATES_CMD_GET_ENABL
E

Returns whether the current settings allow low power
consumption operating states (unequal C0).

Additional information

pParam: Pointer to a UINT bitmask. The status flags
from CONFIGURATION_SEL are returned in the
bitmask.

nSizeOfParam: 4

Example 2

26

292

80

185

186

185

186

© 2013 Thorlabs GmbH184

DCx Cameras

hCam Camera handle

IS_CONFIG_CPU_IDLE_STATES_CMD_SET_DISAB
LE_ON_OPEN

Changes the energy settings of the operating system so
that low power consumption operating states (unequal
C0) are disabled.

Additional information

pParam: Pointer to a UINT variable, see
CONFIGURATION_SEL .

nSizeOfParam: 4

Note: To apply a new setting, you must close all open
DCx Cameras and then reopen at least one camera.

Example 3

IS_CONFIG_CPU_IDLE_STATES_CMD_GET_DISAB
LE_ON_OPEN

Returns the current setting for
IS_CONFIG_CPU_IDLE_STATES_CMD_SET_DISABLE_
ON_OPEN.

Additional information

pParam: Pointer to a UINT bitmask. The status flags
from CONFIGURATION_SEL are returned in the
bitmask.

nSizeOfParam: 4

Example 3

IS_CONFIG_OPEN_MP_CMD_GET_ENABLE Returns whether OpenMP support is enabled.

Additional information

pParam: Pointer to a UINT bitmask. The status flags
from CONFIGURATION_SEL are returned in the
bitmask.

nSizeOfParam: 4

Example 4

IS_CONFIG_OPEN_MP_CMD_SET_ENABLE Enables OpenMP support.

Additional information

pParam: Pointer to a UINT variable,
to enable: IS_CONFIG_OPEN_MP_ENABLE
to disable: IS_CONFIG_OPEN_MP_DISABLE

nSizeOfParam: 4

Note: The settings are lost after the application is closed
and must be set again the next time the camera is
started.

Example 4

IS_CONFIG_OPEN_MP_CMD_GET_ENABLE_DEFAUL
T

Returns the default setting for OpenMP support.

Additional information

pParam: Pointer to a UINT bitmask. The status flags
from CONFIGURATION_SEL are returned in the
bitmask.

nSizeOfParam: 4

Example 4

IS_CONFIG_INITIAL_PARAMETERSET_CMD_SET Sets the parameter set to read and apply from the camera
EEPROM when the camera is opened.

Additional information

pParam: Pointer to a UINT variable,
IS_CONFIG_INITIAL_PARAMETERSET_NONE
IS_CONFIG_INITIAL_PARAMETERSET_1
IS_CONFIG_INITIAL_PARAMETERSET_2

nSizeOfParam: 4

Example 5

IS_CONFIG_INITIAL_PARAMETERSET_CMD_GET
Returns which parameter set will be read and applied
from the camera EEPROM when the camera is opened.

185

186

185

186

185

187

187

185

187

187

© 2013 Thorlabs GmbH

4 Programming (SDK)

185

hCam Camera handle

Additional information

pParam: Pointer to a UINT variable,
IS_CONFIG_INITIAL_PARAMETERSET_NONE
IS_CONFIG_INITIAL_PARAMETERSET_1
IS_CONFIG_INITIAL_PARAMETERSET_2

nSizeOfParam: 4

Example 5

pParam Pointer to a function parameter, whose function depends
on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

Contents of the CONFIGURATION_CAPS Structure

INT IS_CONFIG_CPU_IDLE_STATES_CAP_SUPPORT
ED

Function parameters for setting the processor
operating states are supported.

INT IS_CONFIG_OPEN_MP_CAP_SUPPORTED Function parameters to configure OpenMP are
supported.

INT IS_CONFIG_INITIAL_PARAMETERSET_CAP_SU
PPORTED

Function parameters to load camera parameters
during initialization are supported.

Contents of the CONFIGURATION_SEL Structure

INT IS_CONFIG_CPU_IDLE_STATES_BIT_AC_VALU
E

Set/recover processor operating states for power
supply unit operation

INT IS_CONFIG_CPU_IDLE_STATES_BIT_DC_VALU
E

Set/recover processor operating states for battery
operation

INT IS_CONFIG_OPEN_MP_DISABLE OpenMP support disabled

INT IS_CONFIG_OPEN_MP_ENABLE OpenMP support enabled

INT IS_CONFIG_INITIAL_PARAMETERSET_NONE Load camera parameters during initialization
disabled

INT IS_CONFIG_INITIAL_PARAMETERSET_1 Load camera parameter set 1 during initialization

INT IS_CONFIG_INITIAL_PARAMETERSET_2 Load camera parameter set 2 during initialization

Return values

IS_CANT_OPEN_REGISTRY Error opening a Windows registry key

IS_CANT_READ_REGISTRY Error reading settings from the Windows registry

IS_ERROR_CPU_IDLE_STATES_CONFIGURATION The configuration of the CPU idle has failed.

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_IMAGE_MEM_ALLOCATED The driver could not allocate memory.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_OPERATING_SYSTEM_NOT_SUPPORTED Operating system not supported

IS_SUCCESS Function executed successfully

Related functions

is_ParameterSet()

187

292

© 2013 Thorlabs GmbH186

DCx Cameras

Example 1

UINT nCaps = 0;
INT nRet = is_Configuration(IS_CONFIG_CMD_GET_CAPABILITIES, (void*)&nCaps, sizeof(UINT));
if (nRet == IS_SUCCESS)
{
 if (nCaps & IS_CONFIG_CPU_IDLE_STATES_CAP_SUPPORTED)
 {
 // CPU idle states supported
 }

 if (nCaps & IS_CONFIG_OPEN_MP_CAP_SUPPORTED)
 {
 // OpenMP supported
 }

 if (nCaps & IS_CONFIG_INITIAL_PARAMETERSET_CAP_SUPPORTED)
 {
 // Initial parameter set supported
 }
}

Example 2

INT nCurrentCpuStates = 0;
INT nRet = is_Configuration(IS_CONFIG_CPU_IDLE_STATES_CMD_GET_ENABLE,
 (void*)&nCurrentCpuStates,
 sizeof(nCurrentCpuStates)
);

if (nRet == IS_SUCCESS)
{
 if ((nCurrentCpuStates & IS_CONFIG_CPU_IDLE_STATES_BIT_AC_VALUE) == 0)
 {
 // The CPU idle states for mains power is already deactivated
 }

 if ((nCurrentCpuStates & IS_CONFIG_CPU_IDLE_STATES_BIT_DC_VALUE) == 0)
 {
 // The CPU idle states for battery power is already deactivated
 }
}

Example 3

UINT nCpuStates = IS_CONFIG_CPU_IDLE_STATES_BIT_AC_VALUE | IS_CONFIG_CPU_IDLE_STATES_BIT_DC_VALUE;

INT nRet = is_Configuration(IS_CONFIG_CPU_IDLE_STATES_CMD_SET_DISABLE_ON_OPEN,
 (void*)&nCpuStates,
 sizeof(nCpuStates)
);

if (nRet == IS_SUCCESS)
{
 nCpuStates = 0;
 nRet = is_Configuration(IS_CONFIG_CPU_IDLE_STATES_CMD_GET_DISABLE_ON_OPEN,
 (void*)&nCpuStates,
 sizeof(nCpuStates)
);

 if (nRet == IS_SUCCESS)
 {
 if (nCpuStates & IS_CONFIG_CPU_IDLE_STATES_BIT_AC_VALUE)
 {
 // CPU idle states for mains power are deactivated when camera is opened
 }

 if (nCpuStates & IS_CONFIG_CPU_IDLE_STATES_BIT_DC_VALUE)
 {
 // CPU idle states for battery power are deactivated when camera is opened
 }
 }
}

© 2013 Thorlabs GmbH

4 Programming (SDK)

187

Example 4

UINT nEnabled = 0;
INT nRet = is_Configuration(IS_CONFIG_OPEN_MP_CMD_GET_ENABLE, (void*)&nEnabled, sizeof(nEnabled));
if (nRet == IS_SUCCESS)
{
 if (nEnabled == IS_CONFIG_OPEN_MP_ENABLE)
 {
 // OpenMP enabled
 }
}

nEnabled = 0;
nRet = is_Configuration(IS_CONFIG_OPEN_MP_CMD_GET_ENABLE_DEFAULT, (void*)&nEnabled, sizeof(nEnabled));
if (nRet == IS_SUCCESS)
{
 nRet = is_Configuration(IS_CONFIG_OPEN_MP_CMD_SET_ENABLE, (void*)&nEnabled, sizeof(nEnabled));
 if (nRet == IS_SUCCESS)
 {
 // Default value set
 }
}

Example 5

UINT nNumber = 0;
INT nRet = is_Configuration(IS_CONFIG_INITIAL_PARAMETERSET_CMD_GET, (void*)&nNumber, sizeof(nNumber));
if (nRet == IS_SUCCESS)
{
 if (nNumber == IS_CONFIG_INITIAL_PARAMETERSET_NONE)
 {
 // No parameter set specified
 }
 else if (nNumber == IS_CONFIG_INITIAL_PARAMETERSET_1)
 {
 // Parameter set 1
 }
 else if (nNumber == IS_CONFIG_INITIAL_PARAMETERSET_2)
 {
 // Parameter set 2
 }
}

nNumber = IS_CONFIG_INITIAL_PARAMETERSET_2;
is_Configuration(IS_CONFIG_INITIAL_PARAMETERSET_CMD_SET, (void*)&nNumber, sizeof(nNumber));
if (nRet == IS_SUCCESS)
{
 // Set to parameter set 2
}

© 2013 Thorlabs GmbH188

DCx Cameras

4.3.12 is_Convert

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

IDSEXP is_Convert(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

is_Convert() is a general function for conversions. In version 4.20 a raw Bayer image is converted to the
desired format. You can set all parameters, which are important for software conversion:

Pixel format

Pixel converter (3×3, 5×5)

Color correction

Gamma

Saturation

Edge enhancement

The target buffer must be allocated with the is_AllocImageMem() function and must have the right size.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Note

The following functions are obsolete by the is_Convert() function:

is_ConvertImage()

is_SetConvertParam()

See also Obsolete functions

Input parameters

hCam Camera handle

nCommand

IS_CONVERT_CMD_APPLY_PARAMS_AND_CONVERT_B

UFFER
Converts a raw Bayer buffer with the passed conversion
parameters

pParam Pointer to a function parameter, whose function depends
on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

157

379

© 2013 Thorlabs GmbH

4 Programming (SDK)

189

Contents of the BUFFER_CONVERSION_PARAMS structure

char* pSourceBuffer Pointer to the raw Bayer buffer which was created with the
is_AllocImageMem() function.

char* pDestBuffer Pointer to the target buffer with the converted data which was
created with the is_AllocImageMem() function.

INT nDestPixelFormat Color mode of the target image; see is_SetColorMode() for
the possible modes

INT nDestPixelConverter Conversion mode of the target image; see
is_SetColorConverter() for the possible modes

INT nDestGamma Sets the gamma correction, see is_SetGamma()

INT nDestEdgeEnhancement Sets the edge enhancement, see is_EdgeEnhancement()

INT nDestColorCorrectionMode Sets the color correction, see is_SetColorCorrection()

INT nDestSaturationU Sets the color saturation (saturation U), see is_SetSaturation
()

INT nDestSaturationV Sets the color saturation (saturation V),see is_SetSaturation()

Return value

IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to store
the image in the desired format.

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

Related functions

is_SetColorMode()

is_SetBayerConversion()

Example

BUFFER_CONVERSION_PARAMS conversionParams;

conversionParams.nDestPixelFormat = IS_CM_BGRA8_PACKED;
conversionParams.nDestPixelConverter = IS_CONV_MODE_SOFTWARE_3X3;
conversionParams.nDestColorCorrectionMode = IS_CCOR_DISABLE;
conversionParams.nDestGamma = 100;
conversionParams.nDestSaturationU = 100;
conversionParams.nDestSaturationV = 100;
conversionParams.nDestEdgeEnhancement = 0;

conversionParams.pSourceBuffer = pSourceBuffer;
conversionParams.pDestBuffer = pDestBuffer;

INT nRet = is_Convert(m_hCam,
 IS_CONVERT_CMD_APPLY_PARAMS_AND_CONVERT_BUFFER,
 (void*)&conversionParams,
 sizeof(conversionParams)
);

157

157

319

315

332

206

317

342

342

319

420

© 2013 Thorlabs GmbH190

DCx Cameras

4.3.13 is_CopyImageMem

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_CopyImageMem (HIDS hCam, char* pcSource, INT nID, char* pcDest)

Description

is_CopyImageMem() copies the contents of the image memory described by pcSource and nID to the memory
area to whose starting address pcDest points.

Attention

The allocated memory must be large enough to accommodate the entire image in its current format (bits per
pixel).

Input parameters

hCam Camera handle

pcSource Pointer to the image memory

nID ID of this image memory

pcDest Pointer to the destination memory to copy the image to

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_AllocImageMem()

is_SetAllocatedImageMem()

157

301

© 2013 Thorlabs GmbH

4 Programming (SDK)

191

4.3.14 is_CopyImageMemLines

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_CopyImageMemLines (HIDS hCam, char* pcSource,
 INT nID, INT nLines, char* pcDest)

Description

is_CopyImageMemLines() copies the contents of the image memory described by pcSource and nID to the
memory area to whose starting address pcDest points. The function only copies the number of lines indicated by
nLines.

Attention

The allocated memory must be large enough to accommodate the in nLines given number of image lines
considering the image width and format (Bits per Pixel).

Input parameters

hCam Camera handle

pcSource Pointer to the image memory

nID ID of this image memory

nLines Number of lines to be copied

pcDest Pointer to the destination memory to copy the image to

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_AllocImageMem()

is_SetAllocatedImageMem()

157

301

© 2013 Thorlabs GmbH192

DCx Cameras

4.3.15 is_DeviceFeature

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Note

This command is supported by DCC1240x / DCC3240x cameras only!

Syntax

INT is_DeviceFeature (HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

Using is_DeviceFeature() you can configure special camera functions provided by DCC1240x / DCC3240x
Camera models:

Set line scan mode, see Basics: Line scan mode (only monochrome models).

Toggle between shutter modes, see Basics: Shutter methods.

Control the Log mode, see uc480 Viewer: Shutter.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Input parameters

hCam Camera handle

nCommand

IS_DEVICE_FEATURE_CMD_GET_SUPPORTED_FEAT
URES

Returns the functions supported by the camera. See
Status flags table (Example 1)

IS_DEVICE_FEATURE_CMD_SET_LINESCAN_MODE Sets the line scan mode, see
DEVICE_FEATURE_MODE_CAPS

IS_DEVICE_FEATURE_CMD_GET_LINESCAN_MODE Returns the currently set line scan mode

IS_DEVICE_FEATURE_CMD_SET_LINESCAN_NUMBE
R Sets the scan line used for the line scan mode

IS_DEVICE_FEATURE_CMD_GET_LINESCAN_NUMBE
R Returns the scan line used for the line scan mode

IS_DEVICE_FEATURE_CMD_SET_SHUTTER_MODE Sets the shutter mode, see
DEVICE_FEATURE_MODE_CAPS

IS_DEVICE_FEATURE_CMD_GET_SHUTTER_MODE Returns the shutter mode

IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_DEFAU

LT
Returns the default settings for the Log mode (Example 2

)

IS_DEVICE_FEATURE_CMD_GET_LOG_MODE Returns the currect Log mode (Example 3)

IS_DEVICE_FEATURE_CMD_SET_LOG_MODE Sets the Log mode

IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA

L_VALUE_DEFAULT
Returns the default settings for the manual value of the
Log mode (Example 4)

IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA

L_VALUE_RANGE Returns the range of the manual value of the Log mode.

IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA

L_VALUE
Returns the current manual value of the Log mode
(Example 5)

IS_DEVICE_FEATURE_CMD_SET_LOG_MODE_MANUA

L_VALUE
Sets the manual value of the Log mode

33

30

116

193 194

194

194

195

195

© 2013 Thorlabs GmbH

4 Programming (SDK)

193

hCam Camera handle

IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA

L_GAIN_DEFAULT
Returns the default settings for the manual gain for the
Log mode (Example 6)

IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA

L_GAIN_RANGE Returns the range for the manual gain of the Log mode

IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUA

L_GAIN
Returns the current manual gain of the Log mode
(Example 7)

IS_DEVICE_FEATURE_CMD_SET_LOG_MODE_MANUA

L_GAIN
Sets the manual gain of the Log mode

pParam Pointer to a function parameter, whose function
depends on nCommand.

nSizeOfParam Size (in bytes) of the memory area to which
pParam refers.

Status Flags from DEVICE_FEATURE_MODE_CAPS

IS_DEVICE_FEATURE_CAP_SHUTTER_MODE_ROLLIN

G
Rolling shutter mode is supported/Set mode

IS_DEVICE_FEATURE_CAP_SHUTTER_MODE_ROLLIN

G_GLOBAL_START
Rolling shutter mode with global start is supported/Set
mode

IS_DEVICE_FEATURE_CAP_SHUTTER_MODE_GLOBAL Global shutter mode is supported/Set mode

IS_DEVICE_FEATURE_CAP_SHUTTER_MODE_GLOBAL

_ALTERNATIVE_TIMING
Global shutter mode with different timing parameters is
supported/Set mode

IS_DEVICE_FEATURE_CAP_LINESCAN_MODE_FAST Fast line scan mode is supported/Set mode

IS_DEVICE_FEATURE_CAP_LINESCAN_NUMBER Line number at fast line scan mode is supported/Set
number

IS_DEVICE_FEATURE_CAP_LOG_MODE LinLog pixel mode is supported/Set mode

LOG_MODES

IS_LOG_MODE_FACTORY_DEFAULT Default settings for the Log mode

IS_LOG_MODE_OFF Log mode off

IS_LOG_MODE_MANUAL Manual Log mode. In this case the LogMode value and
the LogMode gain are effective.

195

195

© 2013 Thorlabs GmbH194

DCx Cameras

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAPTURE_MODE The function can not be executed in the current camera
operating mode (free run, trigger or standby).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SUCCESS Function executed successfully

Example 1

INT nSupportedFeatures;
INT nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_SUPPORTED_FEATURES,
 (void*)&nSupportedFeatures, sizeof(nSupportedFeatures));
if (nRet == IS_SUCCESS)
{
 if (nSupportedFeatures & IS_DEVICE_FEATURE_CAP_LINESCAN_MODE_FAST)
 {
 // Enable line scan mode
 INT nMode = IS_DEVICE_FEATURE_CAP_LINESCAN_MODE_FAST;
 nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LINESCAN_MODE, (void*)&nMode,
 sizeof(nMode));
 // Disable line scan mode
 nMode = 0;
 nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LINESCAN_MODE, (void*)&nMode,
 sizeof(nMode));
 // Return line scan mode
 nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LINESCAN_MODE, (void*)&nMode,
 sizeof(nMode));
 }
 if (nSupportedFeatures & IS_DEVICE_FEATURE_CAP_LINESCAN_NUMBER)
 {
 // Set line number
 INT nLineNumber = 512;
 nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LINESCAN_NUMBER,
 (void*)&nLineNumber, sizeof(nLineNumber));
 nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LINESCAN_NUMBER,
 (void*)&nLineNumber, sizeof(nLineNumber));
 }
}

Example 2

/* Read and set default Log mode */
UINT nDefaultLogMode = 0;
INT nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_DEFAULT,
 (void*)&nDefaultLogMode, sizeof(nDefaultLogMode));
if (nRet == IS_SUCCESS) {
 nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LOG_MODE,
 (void*)&nDefaultLogMode, sizeof(nDefaultLogMode));
}

Example 3

/* Read current Log pixel mode */
UINT nLogMode = 0;
INT nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE,
 (void*)&nLogMode, sizeof(nLogMode));

© 2013 Thorlabs GmbH

4 Programming (SDK)

195

Example 4

/* Read default Log pixel mode manual value */
UINT nDefaultLogModeManualValue = 0;
INT nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_VALUE_DEFAULT,
 (void*)&nDefaultLogModeManualValue,
 sizeof(nDefaultLogModeManualValue));

/* Get the range of the manual value */
IS_RANGE_S32 nLogModeManualValueRange;
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_VALUE_RANGE,
 (void*)&nLogModeManualValueRange,
 sizeof(nLogModeManualValueRange);

if (nRet == IS_SUCCESS) {
 INT nMin = nLogModeManualValueRange.s32Min;
 INT nMax = nLogModeManualValueRange.s32Max;
 INT nInc = nLogModeManualValueRange.s32Inc;
}

Example 5

UINT nLogModeValue = 0;

/* Read current Log mode manual value */
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_VALUE,
 (void*)&nLogModeValue, sizeof(nLogModeValue));

/* Set log pixel mode value */
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LOG_MODE_MANUAL_VALUE,
 (void*)&nLogModeValue, sizeof(nLogModeValue));

Example 6

/* Read default Log mode manual gain */
UINT nDefaultLogModeManualGain = 0;
INT nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_GAIN_DEFAULT,
 (void*)&nDefaultLogModeManualGain,
 sizeof(nDefaultLogModeManualGain));

/* Get the range of the manual value */
IS_RANGE_S32 nLogModeManualGainRange;
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_GAIN_RANGE,
 (void*)&nLogModeManualGainRange,
 sizeof(nLogModeManualGainRange));

if (nRet == IS_SUCCESS) {
 INT nMin = nLogModeManualGainRange.s32Min;
 INT nMax = nLogModeManualGainRange.s32Max;
 INT nInc = nLogModeManualGainRange.s32Inc;
}

Example 7

UINT nLogModeGain = 0;

/* Read current Log mode gain */
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_GET_LOG_MODE_MANUAL_GAIN,
 (void*)&nLogModeGain, sizeof(nLogModeGain));

/* Set Log mode gain*/
nRet = is_DeviceFeature(hCam, IS_DEVICE_FEATURE_CMD_SET_LOG_MODE_MANUAL_GAIN,
 (void*)&nLogModeGain, sizeof(nLogModeGain));

© 2013 Thorlabs GmbH196

DCx Cameras

4.3.16 is_DeviceInfo

USB 3 USB 3

Note

This command is supported by DCC3240x USB3 cameras only!

Syntax

INT is_DeviceInfo (HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

Using is_DeviceInfo(), you can query information about connected USB 3 Cameras. The resulting information
is written to the IS_DEVICE_INFO structure. For this purpose, the cameras need not be opened.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Input parameters

hCam Camera handle

nCommand

IS_DEVICE_INFO_CMD_GET_DEVICE_INFO Returns a information structure about the specified
device (Example 1)

pParam Pointer to a function parameter, whose function depends
on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

Contents of the IS_DEVICE_INFO structure

IS_DEVICE_INFO_HEARTBEAT infoDevHeartbeat Camera-related data retrieved from the
camera (from the heartbeat telegram)

See IS_DEVICE_INFO_HEARTBEAT

IS_DEVICE_INFO_CONTROL infoDevControl Camera-related driver data

See IS_DEVICE_INFO_CONTROL

BYTE reserved[240] reserved

Contents of the IS_DEVICE_INFO::IS_DEVICE_INFO_HEARTBEAT structure

BYTE reserved_1[36] reserved

DWORD dwRuntimeFirmwareVersion Firmware version

BYTE reserved_2[8] reserved

WORD wTemperature Camera temperature in degree Celsius

Bit 15: algebraic sign

Bit 14...11: filled according to algebraic sign

Bit 10...4: temperature (places before the
decimal point)

Bit 3...0: temperature (places after the
decimal point)

See the Ambient conditions chapter for
permissible temperature range.

WORD wLinkSpeed_Mb Transfer rate:
IS_USB_HIGH_SPEED = 480

IS_USB_SUPER_SPEED = 4000

197

196

197

486

© 2013 Thorlabs GmbH

4 Programming (SDK)

197

BYTE reserved[208] reserved

Contents of the IS_DEVICE_INFO::IS_DEVICE_INFO_CONTROL structure

DWORD dwDeviceId Internal device ID of the camera

BYTE reserved[148] reserved

Return values

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_SUCCESS Function executed successfully

Related functions

is_GetCameraList()

Example 1

// The camera has the device ID 1
UINT nDeviceId = 1;

IS_DEVICE_INFO deviceInfo;
memset(&deviceInfo, 0, sizeof(IS_DEVICE_INFO));

INT nRet = is_DeviceInfo((HIDS)(nDeviceId | IS_USE_DEVICE_ID),
 IS_DEVICE_INFO_CMD_GET_DEVICE_INFO,
 (void*)&deviceInfo, sizeof(deviceInfo));
if (nRet == IS_SUCCESS)
{
 WORD wTemperature = deviceInfo.infoDevHeartbeat.wTemperature;
}

233

© 2013 Thorlabs GmbH198

DCx Cameras

4.3.17 is_DirectRenderer

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_DirectRenderer (HIDS hCam, UINT nMode, void* pParam, UINT nSize)

Description

Note

The is_DirectRenderer() functions works under Linux only in OpenGL mode.

is_DirectRenderer() provides a set of advanced rendering functions and allows inserting overlay data into the
camera's live image without flicker. The graphics card functions of the Direct3D library are supported under
Windows.

The second input parameter nMode specifies the effect of the is_DirectRenderer() call.

The value of the third parameter pParam depends on the mode selected with nMode: For example, when setting
the overlay size (nMode = DR_SET_OVERLAY_SIZE), a pointer to an array of two values (x and y) is passed
(see code samples). When you load a bitmap image (nMode = DR_LOAD_OVERLAY_FROM_FILE), pParam
passes the path to the file (see code samples). The required parameters are illustrated in the sample codes at
the end of this section.

Notes

1. System requirements

To use the Direct3D functionality, the appropriate version of the Microsoft DirectX Runtime has to be installed in
your PC.

When you are using high-resolution cameras, the maximum texture size supported by the graphics card should
be at least 4096 x 4096 pixels. You can check the maximum texture size by reading out the
D3D_GET_MAX_OVERLAY_SIZE parameter.

The Direct3D mode automatically uses the Windows Desktop color depth setting for the display.

Please also read the notes on graphics cards which are provided in the System requirements chapter.

2. Displaying monochrome or raw data formats

To display monochrome or Bayer raw data in Direct3D, please set the appropriate constants using the
is_SetDisplayMode() function.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the nSizeOfParam
input parameter.

Input parameters

hCam Camera handle

nMode

DR_GET_SUPPORTED Returns either if Direct3D or OpenGL is supported by the
graphics card.

More details

IS_SET_DM_DIRECT3D:
Tests if Direct3D is suppported.

IS_SET_DM_OPENGL:
Tests if OpenGL is supported.

Example

DR_GET_OVERLAY_DC Direct3D only: Returns the device context (DC) handle to
the overlay area of the graphics card.

202

203

56

322

201

© 2013 Thorlabs GmbH

4 Programming (SDK)

199

hCam Camera handle

More details

In Direct3D mode, the DR_GET_OVERLAY_DC mode
returns the device context (DC) handle of the overlay
area. Using this handle, it is possible to access the
overlay using the Windows GDI functionality. Thus, all
Windows graphics commands (e.g. Line, Circle,
Rectangle, TextOut) are available. To transfer the drawn
elements to the overlay, release the DC handle by calling
DR_RELEASE_OVERLAY_DC.

Example

DR_RELEASE_OVERLAY_DC Direct3D only: Releases the device context (DC) handle.

More details

Using DR_RELEASE_OVERLAY_DC, you can release the
DC handle and update the overlay data.

Example

DR_GET_MAX_OVERLAY_SIZE Returns the width x and height y of the maximum overlay
area supported by the graphics card. Example

DR_SET_OVERLAY_SIZE Defines the size of the overlay area (default: current
camera image size). Example

DR_GET_OVERLAY_SIZE Returns the size of the overlay area. (Sample: see
DR_SET_OVERLAY_SIZE)

DR_SET_OVERLAY_POSITION Defines the position of the overlay area. Example

DR_GET_OVERLAY_KEY_COLOR Returns the RGB values of the current key color (default:
black). Example

DR_SET_OVERLAY_KEY_COLOR Defines the RGB values of the key color.

More details

The key color specifies where the camera image will be
visible in the overlay area. For example: if you fill the
complete overlay with the key color, the whole camera
image will be visible. If you fill part of the overlay with a
different color, the camera image will be covered by the
overlay in those places.

The key color has no effect in semi-transparent mode!

Example

DR_SHOW_OVERLAY Enables overlay display on top of the current camera
image. Example

DR_HIDE_OVERLAY Disables overlay display. Example

DR_ENABLE_SCALING Enables real-time scaling of the image to the size of the
display window. The overlay is scaled together with the
camera image. Example

DR_ENABLE_IMAGE_SCALING Direct3D only: Enables real-time scaling of the image to
the size of the display window. The overlay is not scaled.
(Sample: see DR_ENABLE_SCALING)

DR_DISABLE_SCALING Disables real-time scaling. Example

DR_ENABLE_SEMI_TRANSPARENT_OVERLAY Enables a semi-transparent display of the overlay area.

More details

In semi-transparent mode, the values of the camera
image and the overlay data are added up for each pixel.
Since black has the value 0, the complete camera image
will be visible if the overlay is black; if the overlay is white,
only the overlay will be visible. With all other colors, the
camera image will be visible with the overlay
superimposed.

The key color has no effect in semi-transparent mode!

Example

201

201

202

202

202

202

202

202

202

202

202

202

© 2013 Thorlabs GmbH200

DCx Cameras

hCam Camera handle

DR_DISABLE_SEMI_TRANSPARENT_OVERLAY Disables the semi-transparent display of the overlay
area. Example

DR_SET_VSYNC_AUTO Enables synchronization of the image display with the
monitor's image rendering. The image is displayed upon
the monitor's next VSYNC signal. Example

DR_SET_VSYNC_OFF Disables image display synchronization. The image is
displayed immediately. Example

DR_SET_USER_SYNC Direct3D only: Enables synchronization of the image
display with a monitor pixel row specified by the user.

More details

When displaying very large camera images, the auto
VSYNC function might not always optimally synchronize
image rendering. In this case, you can eliminate flicker by
manually setting a suitable position for synchronization.
The position needs to be determined individually, based
on the camera type and the graphics card.

Example

DR_GET_USER_SYNC_POSITION_RANGE Direct3D only: Returns the minimum and maximum row
position for DR_SET_USER_SYNC. Example

DR_LOAD_OVERLAY_FROM_FILE Direct3D only: Loads a bitmap image (*.BMP file) into the
overlay area. If the bitmap image is larger than the overlay
area, the bitmap image is clipped. Example

DR_CLEAR_OVERLAY Deletes the data of the overlay area by filling it with black
color. Example

DR_STEAL_NEXT_FRAME Copies the next image to the active user memory (Steal
function).

More details

Using the pParam parameter, you specify when the
function should return:

IS_WAIT: The function waits until the image save is
complete.

IS_DONT_WAIT: The function returns immediately.

Example

DR_SET_STEAL_FORMAT Defines the color format for the Steal function.

More details

For a list of all available color formats, see the function
description for is_SetColorMode() . The default is
IS_CM_BGRA8_PACKED (RGB 32).

Example

DR_GET_STEAL_FORMAT Returns the color format setting for the Steal function.
Example

DR_SET_HWND Sets a new window handle for image output in Direct3D.
Example

DR_CHECK_COMPATIBILITY Returns whether the graphics card supports the uc480
Direct3D functions. Example

DR_GET_OVERLAY_DATA OpenGL only: Returns a pointer to the overlay.

DR_UPDATE_OVERLAY_DATA OpenGL only: Updates the overlay.

pParam Pointer to a function parameter, whose function depends
on nCommand.

nSize Size (in bytes) of the data object or array.

202

203

203

203

203

203

203

203

319

203

203

203

203

© 2013 Thorlabs GmbH

4 Programming (SDK)

201

Return values

When used with
DR_CHECK_COMPATIBILITY

IS_DR_DEVICE_CAPS_INSUFFICIENT

The graphics hardware does not fully support the uc480
Direct3D functions.

IS_DR_CANNOT_CREATE_SURFACE The image surface or overlay surface could not be
created.

IS_DR_CANNOT_CREATE_TEXTURE The texture could not be created.

IS_DR_CANNOT_CREATE_VERTEX_BUFFER The vertex buffer could not be created.

IS_DR_CANNOT_GET_OVERLAY_DC Could not get the device context handle for the overlay.

IS_DR_CANNOT_LOCK_OVERLAY_SURFACE The overlay surface could not be locked.

IS_DR_CANNOT_RELEASE_OVERLAY_DC Could not release the device context handle for the
overlay.

IS_DR_CANNOT_UNLOCK_OVERLAY_SURFACE The overlay surface could not be unlocked.

IS_DR_DEVICE_CAPS_INSUFFICIENT Function is not supported by the graphics hardware.

IS_DR_DEVICE_OUT_OF_MEMORY Not enough graphics memory available.

IS_DR_NOT_ALLOWED_WHILE_DC_IS_ACTIVE A device context handle is still open in the application.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

Related functions

is_SetDisplayMode()

is_SetColorMode()

is_SetImageMem()

is_RenderBitmap()

Example Supported function

UINT nType = IS_SET_DM_DIRECT3D;
if (is_DirectRenderer(m_pMainView->GetCameraHandle(), DR_GET_SUPPORTED,
 (void*)&nType, sizeof(nType)) == IS_SUCCESS)
{
 // Direct3D is supported
}
nType = IS_SET_DM_OPENGL;
if (is_DirectRenderer(m_pMainView->GetCameraHandle(), DR_GET_SUPPORTED,
 (void*)&nType, sizeof(nType)) == IS_SUCCESS)
{
// OpenGL is supported
}

Example DC handle

//------------------------------------
// DC-Handle
//------------------------------------

// Get DC handle for Overlay
HDC hDC;
is_DirectRenderer (hCam, DR_GET_OVERLAY_DC, (void*)&hDC, sizeof (hDC));

// Release DC handle
is_DirectRenderer (hCam, DR_RELEASE_OVERLAY_DC, NULL, NULL);

322

319

337

297

© 2013 Thorlabs GmbH202

DCx Cameras

Example overlay size and position

//------------------------------------
// Size of overlay
//------------------------------------

// Query maximum size of overlay area
UINT OverlaySize[2];
is_DirectRenderer (hCam, DR_GET_MAX_OVERLAY_SIZE,
 (void*)OverlaySize, sizeof(OverlaySize));
INT nWidth = OverlaySize[0];
INT nHeight = OverlaySize[1];

// Set size of overlay area
UINT Size[2];
Size[0] = 100;
Size[1] = 120;
is_DirectRenderer (hCam, DR_SET_OVERLAY_SIZE,
 (void*)Size, sizeof (Size));

// Set position of overlay area
UINT Position[2];
Position[0] = 20;
Position[1] = 0;
is_DirectRenderer (hCam, DR_SET_OVERLAY_POSITION,
 void*)Position, sizeof (Position));

Example key color

//------------------------------------
// Key color
//------------------------------------

// Get current key color
UINT OverlayKeyColor[3];
is_DirectRenderer (hCam, DR_GET_OVERLAY_KEY_COLOR,
 (void*)OverlayKeyColor, sizeof(OverlayKeyColor));

INT nRed = OverlayKeyColor[0];
INT nGreen = OverlayKeyColor[1];
INT nBlue = OverlayKeyColor[2];

// Set new key color
OverlayKeyColor[0] = GetRValue(m_rgbKeyColor);
OverlayKeyColor[1] = GetGValue(m_rgbKeyColor);
OverlayKeyColor[2] = GetBValue(m_rgbKeyColor);
is_DirectRenderer (hCam, DR_SET_OVERLAY_KEY_COLOR,
 (void*)OverlayKeyColor, sizeof(OverlayKeyColor));

Example display

//------------------------------------
// Display
//------------------------------------

// Show overlay
is_DirectRenderer (hCam, DR_SHOW_OVERLAY, NULL, NULL);

// Hide overlay
is_DirectRenderer (hCam, DR_HIDE_OVERLAY, NULL, NULL);

Example scaling

//------------------------------------
// Scaling
//------------------------------------

// Enable scaling
is_DirectRenderer (hCam, DR_ENABLE_SCALING, NULL, NULL);

// Disable scaling
is_DirectRenderer (hCam, DR_DISABLE_SCALING, NULL, NULL);

Example transparency

//------------------------------------
// Transparency
//------------------------------------

// Enable semi-transparent overlay
is_DirectRenderer (hCam, DR_ENABLE_SEMI_TRANSPARENT_OVERLAY, NULL, NULL);

// Disable semi-transparent overlay
is_DirectRenderer (hCam, DR_DISABLE_SEMI_TRANSPARENT_OVERLAY, NULL, NULL);

© 2013 Thorlabs GmbH

4 Programming (SDK)

203

Example synchronization

//------------------------------------
// Synchronization
//------------------------------------

// Enable auto-synchronization
is_DirectRenderer (hCam, DR_SET_VSYNC_AUTO, NULL, NULL);

// User defined synchronization: Query range and set position
UINT UserSync[2];
is_DirectRenderer (hCam, DR_GET_USER_SYNC_POSITION_RANGE,
 (void*)UserSync, sizeof (UserSync));
INT Min = UserSync[0];
INT Max = UserSync[1];
INT SyncPosition = 400;
is_DirectRenderer (hCam, DR_SET_USER_SYNC,
 void*)&SyncPosition, sizeof (SyncPosition));

// Disable synchronization
is_DirectRenderer (hCam, DR_SET_VSYNC_OFF, NULL, NULL);

Example overlay with BMP

//------------------------------------
// BMP file
//------------------------------------

// Load overlay from BMP file
is_DirectRenderer (hCam, DR_LOAD_OVERLAY_FROM_FILE,
 (void*)”c:\test.bmp”, NULL);

//------------------------------------
// Delete overlay
//------------------------------------

// Delete overlay area
is_DirectRenderer (hCam, DR_CLEAR_OVERLAY, NULL, NULL);

Example steal mode

//------------------------------------
// Steal mode
//------------------------------------

// Get and set color mode for image to be copied
INT nColorMode;
is_DirectRenderer (hCam, DR_GET_STEAL_FORMAT,
 (void*)&nColorMode, sizeof (nColorMode));

nColorMode = IS_CM_MONO8;
is_DirectRenderer (hCam, DR_SET_STEAL_FORMAT,
 void*)&nColorMode, sizeof (nColorMode));

// Copy image with function returning immediately
INT nwait = IS_DONT_WAIT;
is_DirectRenderer(hCam, DR_STEAL_NEXT_FRAME,
 (void*)&wait, sizeof (wait));

Example window handle

//------------------------------------
// Handle to window
//------------------------------------

// Set new window handle for image display
is_DirectRenderer (hCam, DR_SET_HWND,
 (void*)&hWnd, sizeof (hWnd));

Example compatibility

//------------------------------------
// Compatibility
//------------------------------------

// Check graphics card compatibility
INT nRet = is_DirectRenderer (hCam, DR_CHECK_COMPATIBILITY, NULL, NULL);

if (nRet == IS_DR_DEVICE_CAPS_INSUFFICIENT)
// Graphics card does not support Direct3D

© 2013 Thorlabs GmbH204

DCx Cameras

Example OpenGL under Linux

//OpenGL initialize
OPENGL_DISPLAY display;
display.pDisplay = NULL;
display.nWindowID = 0 /* window id */

is_InitCamera(&hCam, (void*)&display);

Example under Linux (with usage of the Cairo library)

UINT Size[2] = { 480, 480 };
is_DirectRenderer (hCam, DR_SET_OVERLAY_SIZE, (void*)Size, sizeof (Size));

char *pOverlayBuffer;
is_DirectRenderer(hCam, DR_GET_OVERLAY_DATA, (void*)&pOverlayBuffer, sizeof(pOverlayBuffer));

cairo_surface_t *surface = 0;
cairo_t *cr = 0;
int w, h;
w = Size[0];
h = Size[1];
surface = cairo_image_surface_create_for_data(buffer, CAIRO_FORMAT_ARGB32, w, h, w * 4);
cr = cairo_create(surface);
cairo_set_line_width (cr, 6);
cairo_rectangle (cr, 12, 12, 232, 70);
cairo_new_sub_path (cr); cairo_arc (cr, 64, 64, 40, 0, 2* 3.14);
cairo_new_sub_path (cr); cairo_arc_negative (cr, 192, 64, 40, 0, -2*3.14);
cairo_set_fill_rule (cr, CAIRO_FILL_RULE_EVEN_ODD);
cairo_set_source_rgb (cr, 0, 0.7, 0); cairo_fill_preserve (cr);
cairo_set_source_rgb (cr, 0, 0, 0); cairo_stroke (cr);
cairo_translate (cr, 0, 128);
cairo_rectangle (cr, 12, 12, 232, 70);
cairo_new_sub_path (cr); cairo_arc (cr, 64, 64, 40, 0, 2*3.14);
cairo_new_sub_path (cr); cairo_arc_negative (cr, 192, 64, 40, 0, -2*3.14);
cairo_set_fill_rule (cr, CAIRO_FILL_RULE_WINDING);
cairo_set_source_rgb (cr, 0, 0, 0.9); cairo_fill_preserve (cr);
cairo_set_source_rgb (cr, 0, 0, 0); cairo_stroke (cr);
cairo_select_font_face (cr, "Sans", CAIRO_FONT_SLANT_NORMAL,
 CAIRO_FONT_WEIGHT_BOLD);
cairo_set_font_size (cr, 90.0);
cairo_move_to (cr, 10.0, 135.0);
cairo_show_text (cr, "Hello");
cairo_move_to (cr, 70.0, 165.0);
cairo_set_font_size (cr, 150.0);
cairo_text_path (cr, "uc480");
cairo_set_source_rgb (cr, 0.5, 0.5, 1);
cairo_fill_preserve (cr);
cairo_set_source_rgb (cr, 0, 0, 0);
cairo_set_line_width (cr, 2.56);
cairo_stroke (cr);
/* draw helping lines */
cairo_set_source_rgba (cr, 1, 0.2, 0.2, 0.6);
cairo_arc (cr, 10.0, 135.0, 5.12, 0, 2*3.14);
cairo_close_path (cr);
cairo_arc (cr, 70.0, 165.0, 5.12, 0, 2*3.14);
cairo_fill (cr);
cairo_destroy (cr);
cairo_surface_destroy (surface);

// update overlay
is_DirectRenderer(hCam, DR_UPDATE_OVERLAY_DATA, NULL, 0);

Sample programs

uc480DirectRenderer

uc480Steal

© 2013 Thorlabs GmbH

4 Programming (SDK)

205

4.3.18 is_DisableEvent

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_DisableEvent (HIDS hCam, INT which)

Description

Using is_DisableEvent(), you disable the event indicated here. The event (e.g. image capture completed) will
usually still occur, but will no longer trigger an event signal. Disabled events are no longer signaled to the
application. You can re-enable the desired event using is_EnableEvent() . See also is_InitEvent() .

Input parameters

hCam Camera handle

which ID of the event to be disabled. See also
is_EnableEvent() .

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_EnableEvent()

Windows only: is_InitEvent()

Windows only: is_ExitEvent()

Linux only: is_WaitEvent()

209 276

209

209

276

214

355

© 2013 Thorlabs GmbH206

DCx Cameras

4.3.19 is_EdgeEnhancement

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_EdgeEnhancement(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

This function enables/disables a software edge filter.

Due to Bayer format color conversion, the original edges of a color image may easily become blurred. By enabling
the digital edge filter, you can optimize edge representation. This function causes a higher CPU load.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Note

The following function is obsolete by the is_EdgeEnhancement() function:

is_SetEdgeEnhancement()

See also Obsolete functions

Input parameters

hCam Camera handle

nCommand

IS_EDGE_ENHANCEMENT_CMD_GET_RANGE Returns the range of the edge enhancement (Example 1
)

IS_EDGE_ENHANCEMENT_CMD_GET_DEFAULT Returns the standard value of the edge enhancement
(Example 2)

IS_EDGE_ENHANCEMENT_CMD_GET Returns the current set edge enhancement (Example 3
)

IS_EDGE_ENHANCEMENT_CMD_SET Sets the edge enhancement (Example 4)

0: no edge enhancement

pParam Pointer to a function parameter, whose function depends
on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

Return values

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_SetColorMode()

is_SetColorConverter()

379

207

207

207

207

319

315

© 2013 Thorlabs GmbH

4 Programming (SDK)

207

Example 1

UINT nRange[3];
ZeroMemory(nRange, sizeof(nRange));

INT nRet = is_EdgeEnhancement(m_hCam,
 IS_EDGE_ENHANCEMENT_CMD_GET_RANGE,
 (void*)nRange,
 sizeof(nRange)
);

if (nRet == IS_SUCCESS)
{
 UINT nEdgeEnhancementMin = nRange[0];
 UINT nEdgeEnhancementMax = nRange[1];
 UINT nEdgeEnhancementInc = nRange[2];
}

Example 2

UINT nDefault;
INT nRet = is_EdgeEnhancement(m_hCam,
 IS_EDGE_ENHANCEMENT_CMD_GET_DEFAULT,
 (void*)&nDefault,
 sizeof(nDefault)
);

Example 3

UINT nEdgeEnhancement;
INT nRet = is_EdgeEnhancement(m_hCam,
 IS_EDGE_ENHANCEMENT_CMD_GET,
 (void*)&nEdgeEnhancement,
 sizeof(nEdgeEnhancement)
);

Example 4

UINT nEdgeEnhancement = 4;
INT nRet = is_EdgeEnhancement(m_hCam,
 IS_EDGE_ENHANCEMENT_CMD_SET,
 (void*)&nEdgeEnhancement,
 sizeof(nEdgeEnhancement)
);

© 2013 Thorlabs GmbH208

DCx Cameras

4.3.20 is_EnableAutoExit

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_EnableAutoExit (HIDS hCam, INT nMode)

Description

is_EnableAutoExit() enables automatic closing of the camera handle after a camera has been removed on-the-fly.
Upon closing of the handle, the entire memory allocated by the driver will be released.

Input parameters

hCam Camera handle

nMode

IS_ENABLE_AUTO_EXIT Enables automatic closing

IS_DISABLE_AUTO_EXIT Disables automatic closing

IS_GET_AUTO_EXIT_ENABLED Returns the current setting

Return values

Current setting when used together
withIS_GET_AUTO_EXIT_ENABLED

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_ExitCamera() 213

© 2013 Thorlabs GmbH

4 Programming (SDK)

209

4.3.21 is_EnableEvent

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_EnableEvent (HIDS hCam, INT which)

Description

Using is_EnableEvent(), you release an event object. Following the release, the event messages for the
created event object are enabled. Depending on the operating system different functions are to call.

Windows Event has to be provided by the application program

Event has to be declared by is_InitEvent()

Event has to be activated by is_EnableEvent()

You have to wait for the event in the application program by WaitForSingleObject or
WaitForMultipleObject

Event has to be deactivated by is_DisableEvent()

Event has to be logged off by is_ExitEvent()

Linux Event has to be provided by the uc480 API

Event has to be activated by is_EnableEvent()

You have to wait for the event by is_WaitEvent()

Event has to be deactivated by is_DisableEvent()

Input parameters

hCam Camera handle

which: ID of the event to be released.

IS_SET_EVENT_AUTOBRIGHTNESS_FINISHED The automatic brightness control in the run-once mode is
completed.

IS_SET_EVENT_CAMERA_MEMORY In the camera memory mode an image acquisition
iteration is finished.

IS_SET_EVENT_CAPTURE_STATUS There is an information about image capturing available.
This information can be requested by
is_CaptureStatus() .

Note that this event replaces the former
IS_SET_EVENT_TRANSFER_FAILED from previous
versions.

IS_SET_EVENT_CONNECTIONSPEED_CHANGED The connection speed of a USB 3 DCx camera changed
from USB 2.0 to USB 3.0 or from USB 3.0 to USB 2.0.

IS_SET_EVENT_DEVICE_RECONNECTED A camera initialized with is_InitCamera() and
disconnected afterwards was reconnected.

IS_SET_EVENT_EXTTRIG An image which was captured following the arrival of a
trigger has been transferred completely.

This is the earliest possible moment for a new capturing
process. The image must then be post-processed by the
driver and will be available after the IS_FRAME
processing event.

IS_SET_EVENT_FRAME A new image is available.

IS_SET_EVENT_NEW_DEVICE A new camera was connected.
This is independent of the device handle (hCam is
ignored).

IS_SET_EVENT_OVERLAY_DATA_LOST Direct3D/OpenGL mode: Because of a re-programming
the parameters of the overlay are invalid. The overlay
must be draw new.

276

205

214

355

205

174

273

© 2013 Thorlabs GmbH210

DCx Cameras

hCam Camera handle

IS_SET_EVENT_REMOVAL A camera was removed.
This is independent of the device handle (hCam is
ignored).

IS_SET_EVENT_REMOVE A camera initialized with is_InitCamera() was
disconnected.

IS_SET_EVENT_SEQ The sequence is completed.

IS_SET_EVENT_STATUS_CHANGED Linux only:

The availability of a camera has changed, e.g. an
available camera was opened.

IS_SET_EVENT_STEAL An image extracted from the overlay is available.

IS_SET_EVENT_WB_FINISHED The automatic white balance control is completed.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_DisableEvent()

Windows only: is_InitEvent()

Windows only: is_ExitEvent()

Linux only: is_WaitEvent()

Example Windows

HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
is_InitEvent(hCam, hEvent, IS_SET_EVENT_FRAME);
is_EnableEvent(hCam, IS_SET_EVENT_FRAME);
is_FreezeVideo(hCam, IS_DONT_WAIT);
DWORD dwRet = WaitForSingleObject(hEvent, 1000);
if (dwRet == WAIT_TIMEOUT)
{
 /* wait timed out */
}
else if (dwRet == WAIT_OBJECT_0)
{
 /* event signalled */
}
is_DisableEvent(hCam, IS_SET_EVENT_FRAME);
is_ExitEvent(hCam, IS_SET_EVENT_FRAME);
CloseHandle(hEvent);

Example Linux

is_EnableEvent(hCam, IS_SET_EVENT_FRAME);
is_FreezeVideo(hCam, IS_DONT_WAIT);
INT nRet = is_WaitEvent(hCam, IS_SET_EVENT_FRAME, 1000);
if (nRet == IS_TIMED_OUT)
{
 /* wait timed out */
}
else if (nRet == IS_SUCCESS)
{
 /* event signalled */
}
is_DisableEvent(hCam, IS_SET_EVENT_FRAME);

Sample programs

SimpleLive (C++)

uc480Event (C++)

273

205

276

214

355

© 2013 Thorlabs GmbH

4 Programming (SDK)

211

4.3.22 is_EnableMessage

USB 2.0

USB 3.0

-

Syntax

INT is_EnableMessage (HIDS hCam, INT which, HWND hWnd)

Description

Using is_EnableMessage(), you can enable Windows messages. If a particular event occurs, the messages
are sent to the application.

Each message is structured as follows:

Message: IS_uc480_MESSAGE

wParam: Event (see table)

lParam: DCx camera handle associated with the message

Attention

You have to deactivate Windows messages with hWnd == NULL before you free the uc480 API library. Otherwise
the application may not close properly.

Input parameters

hCam Camera handle

which: ID of the message to be enabled/disabled

IS_FRAME A new image is available.

IS_SEQUENCE The sequence is completed.

IS_CAPTURE_STATUS An error occurred during the data transfer, see
is_CaptureStatus().

The parameter IS_CAPTURE_STATUS replaces the
previous parameter IS_TRANSFER_FAILED.

The parameter IS_TRANSFER_FAILED was moved into
the new header file uc480_deprecated.h, which
contains all obsolete function definitions and constants. If
necessary the header file uc480_deprecated.h can
be included in addition to the header file uc480.h.

IS_TRIGGER An image which was captured following the arrival of a
trigger has been transferred completely.

This is the earliest possible moment for a new capturing
process. The image must then be post-processed by the
driver and is available after the IS_FRAME message has
occurred.

IS_DEVICE_REMOVED A camera initialized with is_InitCamera() was
disconnected.

IS_DEVICE_RECONNECTED A camera initialized with is_InitCamera() and
disconnected afterwards was reconnected.

IS_NEW_DEVICE A new camera was connected.

IS_DEVICE_REMOVAL A camera was removed.

IS_WB_FINISHED Automatic white balance control is completed (only if this
control was started using the IS_SET_AUTO_WB_ONCE
function).

IS_AUTOBRIGHTNESS_FINISHED Automatic brightness control is completed (only if this
control was started using the
IS_SET_AUTO_BRIGHTNESS_ONCE function).

174

273

273

© 2013 Thorlabs GmbH212

DCx Cameras

hCam Camera handle

IS_CAMERA_MEMORY In the camera memory mode an image acquisition
iteration is finished.

IS_CONNECTIONSPEED_CHANGED The connection speed of a USB 3 DCx camera changed
from USB 2.0 to USB 3.0 or from USB 3.0 to USB 2.0.

hWnd Application window for receiving the message.

NULL disables the message designated by the which
parameter.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_InitEvent() 276

© 2013 Thorlabs GmbH

4 Programming (SDK)

213

4.3.23 is_ExitCamera

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_ExitCamera (HIDS hCam)

Description

is_ExitCamera() disables the hCam camera handle and releases the data structures and memory areas taken
up by the DCx camera. Image memory allocated using the is_AllocImageMem() function which has not
been released yet is automatically released.

Note

We recommend that you call the following functions only from a single thread in order to avoid unpredictable
behaviour of the application.

is_InitCamera()

is_SetDisplayMode()

is_ExitCamera()

See also Programming: Thread programming

Input parameters

hCam Camera handle

Return values

IS_CANT_OPEN_REGISTRY Error opening a Windows registry key

IS_CANT_READ_REGISTRY Error reading settings from the Windows registry

IS_ERROR_CPU_IDLE_STATES_CONFIGURATION The configuration of the CPU idle has failed.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_IMAGE_MEM_ALLOCATED The driver could not allocate memory.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_InitCamera()

is_EnableAutoExit()

157

273

322

213

453

273

208

© 2013 Thorlabs GmbH214

DCx Cameras

4.3.24 is_ExitEvent

USB 2.0

USB 3.0

-

Syntax

INT is_ExitEvent (HIDS hCam, INT which)

Description

is_ExitEvent() deletes an existing event object. After an event has been deleted, you can no longer enable it
by calling the is_EnableEvent() function.

Input parameters

hCam Camera handle

which ID of the event to be deleted. See also is_EnbaleEvent() .

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_EnableEvent()

is_InitEvent()

Example

See also is_ForceTrigger()

209

209

209

276

221

© 2013 Thorlabs GmbH

4 Programming (SDK)

215

4.3.25 is_ExitImageQueue

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_ExitImageQueue (HIDS hCam)

Description

is_ExitImageQueue() deletes a queue which has been initialized with is_InitImageQueue() and
discards all information about the order of queued images. The image memories will be unlocked. The memory
sequence itself persists and can be deleted with is_ClearSequence() .

Input parameters

hCam Camera handle

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_InitImageQueue()

is_WaitForNextImage()

278

179

278

356

© 2013 Thorlabs GmbH216

DCx Cameras

4.3.26 is_Exposure

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_Exposure (HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

Using is_Exposure() you can query the exposure time ranges available in your camera, and set new exposure
times.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Notes

1. Dependencies on other settings

The use of the following functions will affect the exposure time:

is_PixelClock()

is_SetOptimalCameraTiming()

is_SetFrameRate()

is_AOI() (if the image size is changed)

is_SetSubSampling()

is_SetBinning()

Changes made to the image size, the frame rate or the pixel clock frequency also affect the exposure time. For this
reason, you need to call is_Exposure() again after such changes.

2. New driver versions

Newer driver versions sometimes allow an extended value range for the exposure time setting. We recommend
querying the value range every time and set the exposure time explicitly.

Applying new settings

In freerun mode (is_CaptureVideo()), any modification of the exposure time will only become effective
when the next image but one is captured. In trigger mode (is_SetExternalTrigger()), the modification will
be applied to the next image. See also the Applying new parameters chapter.

Accuracy of the exposure time setting

The increments for setting the exposure time (IS_EXPOSURE_CMD_GET_EXPOSURE_RANGE_INC) depend on the
sensor's current timing settings (pixel clock, frame rate). The smallest increment usually corresponds to the
duration of one pixel row, which is the time it takes the sensor to read out one pixel row.

You can query the actual exposure time setting with the IS_EXPOSURE_CMD_GET_EXPOSURE parameter.

Some sensors allow setting the exposure time in smaller increments. Using the IS_EXPOSURE_CMD_GET_CAPS
parameter, you can check whether your sensor supports this function.

For minimum and maximum exposure times as well as other sensor-based dependencies, please refer to the
Camera and sensor data chapter.

Rounding errors from increments

When calculating a new exposure time based on the returned increment, note that calculations with floating point
values in the PC will always be subject to rounding errors. Therefore, an addition or subtraction of the
n*INCREMENT value might not always produce the exact desired result. In this case, the uc480 API rounds down
the floating point value and sets the exposure time to the next lower value.

You can avoid this behavior by additionally adding the value INCREMENT/2.f (half increment) when calculating
with n*INCREMENT. This ensures that the desired value will be set even after rounding.

294

338

329

159

347

310

177

327

46

460

© 2013 Thorlabs GmbH

4 Programming (SDK)

217

Note

Older uc480 exposure time functions

The following uc480 API commands are obsolete by the is_Exposure() function:

is_GetExposureRange()

is_SetExposureTime()

See also Obsolete functions

Input parameters

hCam Camera handle

nCommand

IS_EXPOSURE_CMD_GET_CAPS Returns the supported function modes.

More details

pParam: Pointer to bit mask of type UINT
In the bit mask, the status flags from
EXPOSURE_CAPS are returned.

nSizeOfParam: 4

Example 1

IS_EXPOSURE_CMD_GET_EXPOSURE_DEFAULT Returns the default setting for the exposure time.

More details

pParam: Pointer to variable of type double returning
the default value.

nSizeOfParam: 8

IS_EXPOSURE_CMD_GET_EXPOSURE Returns the currently set exposure time (in ms).

More details

pParam: Pointer to variable of type double returning
the current value.

nSizeOfParam: 8

IS_EXPOSURE_CMD_GET_EXPOSURE_RANGE_MIN Returns the minimum exposure time.

More details

pParam: Pointer to variable of type double returning
the minimum value.

nSizeOfParam: 8

IS_EXPOSURE_CMD_GET_EXPOSURE_RANGE_MAX Returns the maximum exposure time.

More details

pParam: Pointer to variable of type double returning
the maximum value.

nSizeOfParam: 8

IS_EXPOSURE_CMD_GET_EXPOSURE_RANGE_INC Returns the exposure time increment.

More details

pParam: Pointer to variable of type double returning
the increment.

nSizeOfParam: 8

IS_EXPOSURE_CMD_GET_EXPOSURE_RANGE Returns the exposure time range.

More details

pParam: Pointer to array of type double returning
the minimum and maximum values and the increment
(in exactly this order).

nSizeOfParam: 24

IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE_
MIN

Returns the minimum exposure time in fine increments
for some sensors.

More details

pParam: Pointer to variable of type double returning

379

219

220

© 2013 Thorlabs GmbH218

DCx Cameras

hCam Camera handle

the minimum value.

nSizeOfParam: 8

Example 2

IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE_
MAX

Returns the maximum exposure time in fine increments
for some sensors.

More details

pParam: Pointer to variable of type double returning
the maximum value.

nSizeOfParam: 8

IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE_
INC

Returns the exposure time increment in fine increments
for some sensors.

More details

pParam: Pointer to variable of type double returning
the increment.

nSizeOfParam: 8

IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE Returns the exposure time range in fine increments for
some sensors.

More details

pParam: Pointer to array of type double returning
the minimum and maximum values and the increment
(in exactly this order).

nSizeOfParam: 24

Example 3

IS_EXPOSURE_CMD_SET_EXPOSURE Sets the exposure time (in ms).

More details

pParam: Pointer to variable of type double that
passes the value to be set.
After setting the exposure time this value contains the
actually set exposure time. Depending on the sensor
the set exposure time may vary slightly from the
desired exposure time.

nSizeOfParam: 8

If 0 is passed, the exposure time is set to the maximum
value of 1/frame rate.

IS_EXPOSURE_CMD_GET_LONG_EXPOSURE_RANGE_M
IN

Returns the minimum long exposure time.

More information

pParam: Pointer to variable of type double returning the
minimum value.

nSizeOfParam: 8

IS_EXPOSURE_CMD_GET_LONG_EXPOSURE_RANGE_M
AX

Returns the maximum long exposure time.

More information

pParam: Pointer to variable of type double returning the
maximum value.

nSizeOfParam: 8

IS_EXPOSURE_CMD_GET_LONG_EXPOSURE_RANGE_I
NC

Returns the increments for long exposure.

More information

pParam: Pointer to variable of the type double returning
the increment.

nSizeOfParam: 8

IS_EXPOSURE_CMD_GET_LONG_EXPOSURE_RANGE Returns the value range for long exposure.

More information

pParam: Pointer to an array of the type double
returning the minmum and maximum values and the

220

220

© 2013 Thorlabs GmbH

4 Programming (SDK)

219

hCam Camera handle

increment.

nSizeOfParam: 24

IS_EXPOSURE_CMD_GET_LONG_EXPOSURE_ENABLE Returns the current settings for long exposure.

More information

pval1: returns the current setting

IS_EXPOSURE_CMD_SET_LONG_EXPOSURE_ENABLE Enables/Disables long exposure.

More information

pval1 = 1 enables control, 0 disables control

pParam Pointer to a function parameter, whose function depends
on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

Contents of the EXPOSURE_CAPS structure

INT IS_EXPOSURE_CAP_EXPOSURE The exposure time setting is supported

INT IS_EXPOSURE_CAP_FINE_INCREMENT Fine exposure time increments are supported

INT IS_EXPOSURE_CAP_LONG_EXPOSURE Long time exposure is supported

Return values

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no camera
connected or initialization error).

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver has been
loaded.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match the current
camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the versions of
the uc480_api.dll (API) and the driver file (uc480_usb.sys) do
not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could not be
terminated within the allowable period.

Related functions

is_SetFrameRate()

is_PixelClock()

is_SetOptimalCameraTiming()

is_SetAutoParameter()

is_AutoParameter()

is_SetHardwareGain()

329

294

338

303

167

333

© 2013 Thorlabs GmbH220

DCx Cameras

Example 1

UINT nCaps = 0;
INT nRet = is_Exposure(m_hCam, IS_EXPOSURE_CMD_GET_CAPS, (void*)&nCaps, sizeof(nCaps));

if (nRet == IS_SUCCESS)
{
 if (nCaps & IS_EXPOSURE_CAP_FINE_INCREMENT)
 {
 // Fine increment supported
 }
}

Example 2

double dblMin, dblMax, dblInc;

INT nRet = is_Exposure(m_hCam,
 IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE_MIN,
 (void*)&dblMin,
 sizeof(dblMin)
);

INT nRet = is_Exposure(m_hCam,
 IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE_MAX,
 (void*)&dblMax,
 sizeof(dblMax)
);

INT nRet = is_Exposure(m_hCam,
 IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE_INC,
 (void*)&dblInc,
 sizeof(dblInc)
);

Example 3

double dblRange[3];
double dblMin, dblMax, dblInc;

INT nRet = is_Exposure(m_hCam,
 IS_EXPOSURE_CMD_GET_FINE_INCREMENT_RANGE,
 (void*)dblRange,
 sizeof(dblRange)
);

if (nRet == IS_SUCCESS)
{
 dblMin = dblRange[0];
 dblMax = dblRange[1];
 dblInc = dblRange[2];
}

© 2013 Thorlabs GmbH

4 Programming (SDK)

221

4.3.27 is_ForceTrigger

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_ForceTrigger (HIDS hCam)

Description

You can use is_ForceTrigger() to force a software-controlled capture of an image while a capturing process
triggered by hardware is in progress. This function can only be used if the triggered capturing process was started
using the IS_DONT_WAIT parameter.

Input parameters

hCam Camera handle

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_FreezeVideo()

is_CaptureVideo()

is_SetExternalTrigger()

Example

Enable trigger and wait 1 second for the external trigger. If no trigger signal has arrived, force an exception using
is_ForceTrigger().

HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, "");
if (hEvent != NULL)
{
 is_InitEvent(hCam, m_hEvent, IS_SET_EVENT_FRAME);
 is_EnableEvent(hCam, IS_SET_EVENT_FRAME);

 is_SetExternalTrigger(hCam, IS_SET_TRIGGER_HI_LO);
 is_FreezeVideo(hCam, IS_DONT_WAIT);

 if (WaitForSingleObject(m_hEvent, 1000) != WAIT_OBJECT_0)
 {
 // No trigger has been received, so force image capture
 is_ForceTrigger(hCam);
 }

 is_DisableEvent(hCam, IS_SET_EVENT_FRAME);
 is_ExitEvent(hCam, IS_SET_EVENT_FRAME);
}

223

177

327

© 2013 Thorlabs GmbH222

DCx Cameras

4.3.28 is_FreeImageMem

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_FreeImageMem (HIDS hCam, char* pcImgMem, INT id)

Description

is_FreeImageMem() releases an image memory that was allocated using is_AllocImageMem() and
removes it from the driver management.

Note

If the memory was not allocated using an SDK function, you need to call is_FreeImageMem() as well. Otherwise,
there may be errors when the driver keeps trying to access this memory.

This does however not release the memory. So you need to make sure that the memory will be released again.

Input parameters

hCam Camera handle

pcImgMem Points to the starting address of the memory (e.g. set in the
is_AllocImageMem() function)

id ID of this memory

Return values

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence
and cannot be added again.

IS_CANT_CLEANUP_MEMORY The driver could not release the allocated memory.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_AllocImageMem()

157

157

157

© 2013 Thorlabs GmbH

4 Programming (SDK)

223

4.3.29 is_FreezeVideo

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_FreezeVideo (HIDS hCam, INT Wait)

Description

is_FreezeVideo() acquires a single image from the camera. In DIB mode, the image is stored in the active
image memory. If ring buffering is used in DIB mode, the captured image is transferred to the next available image
m emory of the sequence. Once the last available sequence memory has been filled, the sequence event or
message will be triggered.

In Direct3D or OpenGL mode, the is directly copied to the graphics card buffer and then displayed.

Image capture will be started by a trigger if you previously enabled the trigger mode using
is_SetExternalTrigger() . A hardware triggered image acquisition can be cancelled using
is_StopLiveVideo() if exposure has not started yet.

For further information on the image capture modes of the DCx camera, see the How to proceed: Image capture
 section.

Input parameters

hCam Camera handle

Wait

IS_DONT_WAIT Timeout value for image capture (see also the How to
proceed: Timeout values for image capture section)IS_WAIT

Time t

Return values

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver has been
loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no camera
connected or initialization error).

IS_CAPTURE_RUNNING A capturing operation is in progress and must be terminated before
you can start another one.

IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to store the image in
the desired format.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match the current
camera model.

IS_INVALID_EXPOSURE_TIME This setting is not available for the currently set exposure time.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the versions of
the uc480_api.dll (API) and the driver file (uc480_usb.sys) do
not match.

IS_NO_ACTIVE_IMG_MEM No active image memory available. You must set the memory to
active using the is_SetImageMem() function or create a
sequence using the is_AddToSequence() function.

IS_NO_USB20 The camera is connected to a port which does not support the USB
2.0 high-speed standard.

327

353

134

135

© 2013 Thorlabs GmbH224

DCx Cameras

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_TIMED_OUT A timeout occurred. An image capturing process could not be
terminated within the allowable period.

IS_SUCCESS Function executed successfully

IS_TRANSFER_ERROR Transfer error. Frequent transfer errors can mostly be avoided by
reducing the pixel rate.

Related functions

is_HasVideoStarted()

is_IsVideoFinish()

is_SetExternalTrigger()

is_ForceTrigger()

is_CaptureVideo()

is_SetTimeout()

is_CaptureStatus()

Example

Enable trigger mode, set high-active flash mode and capture an image:

is_SetExternalTrigger(hCam, IS_SET_TRIGGER_SOFTWARE);

// Set the flash to a high active pulse for each image in the trigger mode
UINT nMode = IO_FLASH_MODE_TRIGGER_HI_ACTIVE;
is_IO(m_hCam, IS_IO_CMD_FLASH_SET_MODE, (void*)&nMode, sizeof(nMode));

is_FreezeVideo(hCam, IS_WAIT);

Sample programs

SimpleAcquire (C++)

uc480C# Demo (C#)

259

288

327

221

177

350

174

© 2013 Thorlabs GmbH

4 Programming (SDK)

225

4.3.30 is_GetActiveImageMem

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetActiveImageMem (HIDS hCam, char** ppcMem, INT* pnID)

Description

is_GetActiveImageMem() returns the pointer to the starting address and the ID number of the active image
memory.

If a Direct3D mode is active and image memory was nevertheless allocated, the pointer to the image memory and
its ID will be returned. However, in Direct3D mode, the image will not be copied automatically to this image
memory.

Input parameters

hCam Camera handle

ppcMem Returns the pointer to the starting address of the active
image memory.

pnID Returns the ID of the active image memory.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_AllocImageMem()

is_GetImageMem()

is_SetImageMem()

is_SetAllocatedImageMem()

157

247

337

301

© 2013 Thorlabs GmbH226

DCx Cameras

4.3.31 is_GetActSeqBuf

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetActSeqBuf (HIDS hCam, INT* pnNum,
 char** ppcMem, char** ppcMemLast);

Description

Using is_GetActSeqBuf(), you can determine the image memory which is currently used for capturing an
image (ppcMem) or the image memory that was last used for capturing an image (ppcMemLast). This function
is only available if you have enabled ring buffering.

Attention

All input parameters of a function have to be initialized with valid values before the function is called; this also
applies to parameters that are not used. Variables can be preset with '0', for example. For unused parameters, the
NULL pointer has to be passed.

Note

This number is not the ID of the image memory that was allocated using the is_AllocImageMem() function,
but the running number from the order in which memory was allocated by the is_AddToSequence() function.

Input parameters

hCam Camera handle

pnNum Contains the number of the image memory currently used for image capturing.

If image capturing is already in progress when is_GetActSeqBuf() is
called, pnNum will return the value 0 until the sequence arrives at the first image
memory again.

ppcMem Contains the starting address of the image memory currently used for image
capturing.

ppcMemLast Contains the starting address of the image memory last used for image
capturing.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SEQUENCE_LIST_EMPTY The sequence list is empty and cannot be deleted.

IS_SUCCESS Function executed successfully

Related functions

is_AddToSequence()

is_GetImageMem()

157

156

156

247

© 2013 Thorlabs GmbH

4 Programming (SDK)

227

4.3.32 is_GetAutoInfo

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetAutoInfo (HIDS hCam, UC480_AUTO_INFO* pInfo)

Description

Using the is_GetAutoInfo() function, you can query status information on the automatic image control
features. This information is written to the UC480_AUTO_INFO structure.

For further information on automatic control, please refer to the Automatic image control chapter.

Attention

The status information returned in the UC480_AUTO_INFO structure is only valid if at least one of the auto control
feature has been enabled using is_SetAutoParameter() .

Input parameters

hCam Camera handle

pinfo UC480_AUTO_INFO structure (see below)

Contents of the UC480_AUTO_INFO Structure

INT AutoAbility Supported auto control features

AC_SHUTTER Auto exposure shutter is supported

AC_SENSOR_SHUTTER The sensor's internal auto exposure shutter is
supported

AC_FRAMERATE Auto frame rate is supported

AC_SENSOR_FRAMERATE The sensor's internal auto frame rate is supported

AC_GAIN Auto gain control is supported

AC_SENSOR_GAIN The sensor's internal auto gain control is
supported

AC_SENSOR_AUTO_
CONTRAST_CORRECTION

Auto contrast correction for automatic brightness
control is supported

AC_SENSOR_AUTO_
CONTRAST_FDT_AOI

Use of face detection as field of view for automatic
brightness control is supported

AC_SENSOR_AUTO_
BACKLIGHT_COMP

Backlight compensation for automatic brightness
control is supported

AC_WHITEBAL Auto white balance is supported

AC_SENSOR_WB The sensor's internal auto white balance is
supported

AUTO_BRIGHT_STATUS sBrightCtrlStatus Status of automatic brightness control, see below

AUTO_WB_STATUS sWBCtrlStatus Status of auto white balance, see below

DWORD AShutterPhotomCaps Returns a bit mask containing all supported
photometry settings (fields of view) for auto
exposure shutter, see below.

DWORD AGainPhotomCaps Returns a bit mask containing all supported
photometry settings (fields of view) for auto gain
control, see below.

DWORD AAntiFlickerCaps Returns a bit mask containing all supported anti
flicker settings for automatic control, see below.

DWORD SensorWBModeCaps Returns a bit mask containing all supported
settings for the sensor's auto white balance, see

45

303

© 2013 Thorlabs GmbH228

DCx Cameras

below.

DWORD reserved[8] Reserved space for extensions

Contents of the UC480_AUTO_INFO::AUTO_BRIGHT_STATUS Structure

INT curValue Current average brightness of the image (actual value); the
following rule applies independently of the image bit depth:

0 = black

255 = white

INT curError Current control deviation (error)

INT curController Current parameter value

AC_SHUTTER Exposure time (shutter)

AC_GAIN Gain

INT curCtrlStatus Current control status

ACS_ADJUSTING Control is active.

ACS_FINISHED Control is completed.

ACS_DISABLED Control is disabled.

Contents of the UC480_AUTO_INFO::AUTO_WB_STATUS Structure

INT curController Current white balance control

AC_WB_RED_CHANNEL Value of the red channel

AC_WB_GREEN_CHANNEL Value of the green channel

AC_WB_BLUE_CHANNEL Value of the blue channel

AUTO_WB_CHANNEL_STATUS RedChannel See AUTO_WB_CHANNEL_STATUS

AUTO_WB_CHANNEL_STATUS GreenChannel See AUTO_WB_CHANNEL_STATUS

AUTO_WB_CHANNEL_STATUS BlueChannel See AUTO_WB_CHANNEL_STATUS

Contents of the UC480_AUTO_INFO::AUTO_WB_STATUS::AUTO_WB_CHANNEL_STATUS Structure

INT curValue Current average grayscale value (actual value)

INT curError Current control deviation (error)

INT curCtrlStatus Current control status

ACS_ADJUSTING Control is active.

ACS_FINISHED Control is completed.

ACS_DISABLED Control is disabled.

Status Flags in UC480_AUTO_INFO::AShutterPhotomCaps

AS_PM_NONE The entire field of view is used for metering.

AS_PM_SENS_CENTER_WEIGHTED Metering is based on the entire field of view, but gives
greater emphasis to the center area of the image.

AS_PM_SENS_CENTER_SPOT Only a small area in the image center is used for
metering.

AS_PM_SENS_PORTRAIT Metering is based on that part of the field of view that
corresponds to the portrait format.

AS_PM_SENS_LANDSCAPE Metering is based on that part of the field of view that
corresponds to the landscape format.

Status Flags in UC480_AUTO_INFO::AGainPhotomCaps

AG_PM_NONE The entire field of view is used for metering.

AG_PM_SENS_CENTER_WEIGHTED Metering is based on the entire field of view, but gives
greater emphasis to the center area of the image.

© 2013 Thorlabs GmbH

4 Programming (SDK)

229

AG_PM_SENS_CENTER_SPOT Only a small area in the image center is used for
metering.

AG_PM_SENS_PORTRAIT Metering is based on that part of the field of view that
corresponds to the portrait format.

AG_PM_SENS_LANDSCAPE Metering is based on that part of the field of view that
corresponds to the landscape format.

Status Flags in UC480_AUTO_INFO::AAntiFlickerCaps

ANTIFLCK_MODE_OFF Anti flicker function disabled.

ANTIFLCK_MODE_SENS_AUTO The anti flicker mode is selected automatically (50 or
60 Hz).

ANTIFLCK_MODE_SENS_50_FIXED The anti flicker mode is set to a fixed value of 50 Hz.

ANTIFLCK_MODE_SENS_60_FIXED The anti flicker mode is set to a fixed value of 60 Hz.

Status Flags in UC480_AUTO_INFO::SensorWBModeCaps

WB_MODE_DISABLE Disables the sensor's auto white balance

WB_MODE_AUTO Sensor automatically determines auto white balance

WB_MODE_ALL_PULLIN Sensor automatically determines auto white balance
using the Gray World algorithm. This algorithm assumes
that the average color value in the scene is gray.

WB_MODE_INCANDESCENT_LAMP Sensor sets auto white balance to incandescent light

WB_MODE_FLUORESCENT_DL Sensor sets auto white balance to fluorescent light
(daylight type)

WB_MODE_OUTDOOR_CLEAR_SKY Sensor sets auto white balance to direct daylight

WB_MODE_OUTDOOR_CLOUDY Sensor sets auto white balance to cloudy sky

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

Related functions

is_SetAutoParameter() 303

© 2013 Thorlabs GmbH230

DCx Cameras

4.3.33 is_GetBusSpeed

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetBusSpeed (HIDS hCam)

Description

Using is_GetBusSpeed(), you can query whether a camera is connected to a USB 2.0 or USB 3.0 host
controller. You can see in the uc480 Camera Manager below "General Information" which kind of USB host
controller are available on your PC.

Input parameters

hCam Camera handle

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

IS_USB_10 The controller to which the camera is connected does not support USB 2.0.

IS_USB_20 The camera is connected to a USB 2.0 controller.

IS_USB_30 The camera is connected to a USB 3.0 controller.

70

© 2013 Thorlabs GmbH

4 Programming (SDK)

231

4.3.34 is_GetCameraInfo

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetCameraInfo (HIDS hCam, CAMINFO* pInfo)

Description

is_GetCameraInfo() reads out the data hard-coded in the EEPROM and writes it to the data structure that
pInfo points to.

Note

The serial number or model name should not be used to find a specific camera (e.g. in order to control this specific
camera). If you use the serial number, the software may not find the serial number after exchanging the camera.
The model name can be changed when updating the camera driver.

Instead, we recommend identifying a camera by a fixed camera ID, the camera type or by the sensor ID (see
is_GetCameraList()). The advantage of the camera ID is that you can set it manually. That means if you
exchange a camera, you can set the same camera ID for the new camera.

Attention

For technical reasons, the following values for CAMINFO::Type are internally redirected to the same value:

IS_CAMERA_TYPE_UC480_USB_SE and IS_CAMERA_TYPE_UC480_USB_RE

You can use the parameter strSensorName of the is_GetSensorInfo() function to discern the camera
models DCU223x, DCU224x and DCC1240x.

Input parameters

hCam Camera handle

pInfo Pointer to a CAMINFO data structure

Contents of the CAMINFO Structure

char SerNo[12] Serial number of the camera

char ID[20] Manufacturer of the camera

char Version[10] For USB cameras, this value indicates the USB board hardware
version (e.g. V2.10)

char Date[12] System date of the final quality check (e.g. 01.08.2011
(DD.MM.YYYY))

unsigned char Select Camera ID

unsigned char Type Camera type:

IS_CAMERA_TYPE_UEYE_USB_SE: DCU223x, DCU224x and
DCC1240x

IS_CAMERA_TYPE_UEYE_USB_LE: DCC1545M / DCC1645C

IS_CAMERA_TYPE_UEYE_USB3_CP: DCC3240x

char Reserved[8] Reserved

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_CameraStatus()

233

251

172

© 2013 Thorlabs GmbH232

DCx Cameras

is_GetSensorInfo() 251

© 2013 Thorlabs GmbH

4 Programming (SDK)

233

4.3.35 is_GetCameraList

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetCameraList (UC480_CAMERA_LIST* pucl)

Description

Using is_GetCameraList(), you can query information about the connected cameras. To get all information
that is available, you need to adjust the field size to the number of connected cameras. The following tables explain
the structures used for that purpose.

Input parameters

pucl Handle to the UC480_CAMERA_LIST structure

Contents of the UC480_CAMERA_LIST Structure

ULONG dwCount Has to be initialized with the number of cameras
connected to the system.

This value can be read out with
is_GetNumberOfCameras() .

UC480_CAMERA_INFO uci[1] Placeholder for 1 … n UC480_CAMERA_INFO structures

Contents of the UC480_CAMERA_LIST::UC480_CAMERA_INFO Structure

DWORD dwCameraID Customizable camera ID. This ID is stored in the
camera and is persistent.

DWORD dwDeviceID Internal device ID. This ID is generated by the driver
depending on order of connection and camera type. The
device ID is not persistent.

DWORD dwSensorID Sensor ID

DWORD dwInUse 1 = camera is being used.

0 = camera is not being used.

Char SerNo[16] Serial number of the camera

Char Model[16] Camera model

DWORD dwStatus Information for the status of the camera

DWORD dwReserved[15] Reserved for later use

Note

The serial number or model name should not be used to find a specific camera (e.g. in order to control this specific
camera). If you use the serial number, the software may not find the serial number after exchanging the camera.
The model name can be changed when updating the camera driver.

Instead, we recommend identifying a camera by a fixed camera ID, the camera type or by the sensor ID. The
advantage of the camera ID is that you can set it manually. That means if you exchange a camera, you can set the
same camera ID for the new camera.

Return values

IS_ACCESS_VIOLATION Not enough memory allocated for the
UC480_CAMERA_LIST structure

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

249

© 2013 Thorlabs GmbH234

DCx Cameras

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_GetNumberOfCameras()

Example

// At least one camera must be available
INT nNumCam;
if(is_GetNumberOfCameras(&nNumCam) == IS_SUCCESS) {
 if(nNumCam >= 1) {
 // Create new list with suitable size
 UC480_CAMERA_LIST* pucl;
 pucl = (UC480_CAMERA_LIST*) new BYTE [sizeof (DWORD) + nNumCam * sizeof (UC480_CAMERA_INFO)];
 pucl->dwCount = nNumCam;

 //Retrieve camera info
 if (is_GetCameraList(pucl) == IS_SUCCESS) {
 int iCamera;
 for (iCamera = 0; iCamera < (int)pucl->dwCount; iCamera++) {
 //Test output of camera info on the screen
 printf("Camera %i Id: %d", iCamera,
 pucl->uci[iCamera].dwCameraID);
 }
 }
 }
 delete [] pucl;
}

249

© 2013 Thorlabs GmbH

4 Programming (SDK)

235

4.3.36 is_GetCameraLUT

USB 3.0 USB 3.0

Syntax

INT is_GetCameraLUT (HIDS hCam,
 UINT Mode, UINT NumberOfEntries,
 double* pRed_Grey,
 double* pGreen,
 double* pBlue)

Description

is_GetCameraLUT() returns the current LUT values. Using the is_SetCameraLUT() function, you can select a
different LUT for the camera.

Note

The is_SetCameraLUT() function is only supported by DCC3240 cameras.

Input parameters

hCam Camera handle

Mode

IS_GET_CAMERA_LUT_USER Returns the LUT values set by the user without modifications.

IS_GET_CAMERA_LUT_COMPLETE Returns the LUT values set by the user after the gamma, contrast
and brightness values have been taken into account.

NumberOfEntries Number of the LUT values

IS_CAMERA_LUT_64 LUT with 64 values

pRed_Grey Pointer to the array to which the red channel values or
the gray scale value of the LUT are written.

pGreen Pointer to the array to which the green channel values
of the LUT are written.

pBlue Pointer to the array to which the blue channel values
of the LUT are written.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_SUCCESS Function executed successfully

© 2013 Thorlabs GmbH236

DCx Cameras

4.3.37 is_GetColorConverter

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetColorConverter (HIDS hCam,
 INT ColorMode,
 INT* pCurrentConvertMode,
 INT* pDefaultConvertMode,
 INT* pSupportedConvertModes)

Description

For color cameras, is_GetColorConverter() returns the set mode or all available Bayer conversion modes for
the specified color mode. The return value depends on the selected color mode. For further information, please
refer to the Appendix: color and memory formats section.

Input parameters

hCam Camera handle

ColorMode Color mode for which the converter is to be returned

For a list of all available color formats and the associated
input parameters, see the Appendix: Color and memory
formats section.

pCurrentConvertMode Currently selected converter for this color mode

pDefaultConvertMode Default converter for this color mode

pSupportedConvertModes All converters supported for this color mode. Possible
converters are:
IS_CONV_MODE_NONE
IS_CONV_MODE_SOFTWARE_3X3
IS_CONV_MODE_SOFTWARE_5X5
IS_CONV_MODE_HARDWARE_3X3

Return values

IS_INVALID_COLOR_FORMAT Invalid color format

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_SetColorConverter()

is_SetColorMode()

502

502

315

319

© 2013 Thorlabs GmbH

4 Programming (SDK)

237

4.3.38 is_GetColorDepth

USB 2.0

USB 3.0

-

Syntax

INT is_GetColorDepth(HIDS hCam, INT* pnCol, INT* pnColMode)

Description

is_GetColorDepth() retrieves the current Windows Desktop color setting and returns the bit depth per pixel
and the matching uc480 color mode. The color mode can be passed directly to the is_SetColorMode()
function. You need to pass the bit depth when allocating an image memory.

Input parameters

hCam Camera handle

pnCol Returns the bit depth of the color setting.

pnColMode Returns the uc480 color mode that corresponds to
pnCol.

For a list of all available color formats and the associated
input parameters, see the Appendix: color and Memory
Formats section.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_SetColorMode()

is_AllocImageMem()

319

502

319

157

© 2013 Thorlabs GmbH238

DCx Cameras

4.3.39 is_GetDLLVersion

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetDLLVersion()

Description

Returns the version of the uc480_api.dll.

Input parameters

<none>

Return values

The return value contains the version number which is coded as follows:

Bits 31-24: Major version

Bits 23-16: Minor version

Bits 15-0: Build version

Related functions

is_GetOsVersion()

Example

int version = is_GetDLLVersion();
int build = version & 0xFFFF;
version = version >> 16;
int minor = version & 0xFF;
version = version >> 8;
int major = version & 0xFF;
printf("API version %d.%d.%d \n\n", major, minor, build);

250

© 2013 Thorlabs GmbH

4 Programming (SDK)

239

4.3.40 is_GetError

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetError (HIDS hCam, INT* pErr, IS_CHAR** ppcErr)

Description

is_GetError() queries the last error that occurred and returns the associated error code and message. We
recommend to use this function after an error has occurred that returned IS_NO_SUCCESS. Each error message
will be overwritten when a new error occurs.

Input parameters

hCam Camera handle

PErr Pointer to the variable containing the error code

PpcErr Pointer to the string containing the error text

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_CaptureStatus()

is_SetErrorReport()

is_CameraStatus()

174

326

172

© 2013 Thorlabs GmbH240

DCx Cameras

4.3.41 is_GetFramesPerSecond

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetFramesPerSecond (HIDS hCam, double* dblFPS)

Description

In live capture mode started by is_CaptureVideo() , the is_GetFramesPerSecond() function returns the
number of frames actually captured per second.

Input parameters

hCam Camera handle

dblFPS Returns the current frame rate.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_GetFrameTimeRange()

is_SetFrameRate()

is_PixelClock()

is_Exposure()

177

241

329

294

216

© 2013 Thorlabs GmbH

4 Programming (SDK)

241

4.3.42 is_GetFrameTimeRange

USB 2.0 USB 2.0

Syntax

INT is_GetFrameTimeRange (HIDS hCam,
 double* min, double* max, double* intervall)

Description

Using is_GetFrameTimeRange(), you can read out the frame rate settings which are available for the current
pixel clock setting. The returned values indicate the minimum and maximum frame duration in seconds. You can
set the frame duration between min and max in increments defined by the intervall parameter.

The following applies:

intervall)*n(min
1

min
1max

max
1min

nfps

fps

fps

The call of this function makes only sense in the freerun mode.

Note

The use of the following functions will affect the frame duration:

is_PixelClock()

is_SetOptimalCameraTiming()

is_AOI() (if the image size is changed)

is_SetSubSampling()

is_SetBinning()

Changes made to the window size, the frame rate or the read-out timing (pixel clock frequency) also affect the
defined frame duration. For this reason, you need to call is_GetFrameTimeRange() again after such changes.

Input parameters

hCam Camera handle

min Returns the minimum available frame duration.

max Returns the maximum available frame duration.

intervall Returns the increment you can use to change the frame
duration.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_GetFramesPerSecond()

is_SetFrameRate()

is_PixelClock()

is_Exposure()

17

294

338

159

347

310

240

329

294

216

© 2013 Thorlabs GmbH242

DCx Cameras

4.3.43 is_GetImageHistogram

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetImageHistogram (HIDS hCam,
 int nID, INT ColorMode, DWORD* pHistoMem)

Description

is_GetImageHistogram() computes the histogram of the submitted image. The histogram always contains 256
values per channel. For color modes with a bit depth of more than 8 bits, the system evaluates the 8 most
significant bits (MSBs).

Input parameters

hCam Camera handle

nID Memory ID

ColorMode Color mode of the image with the nID memory ID

For a list of all available color formats and the associated input parameters, see
the Appendix: Color and memory formats section.

pHistoMem Pointer to a DWORD array

The array must be allocated in such a way that it can accommodate 3*256
values for color formats and in raw Bayer mode. In monochrome mode, the
array must be able to accommodate 1*256 values.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_COLOR_FORMAT Invalid color format

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

Related functions

is_SetColorMode()

502

319

© 2013 Thorlabs GmbH

4 Programming (SDK)

243

Example

char * pcSource;
INT nIDSource;
is_AllocImageMem (hCam, 256, 256, 24, &pcSource, &nIDSource);

int nX, nY, nBits, nPitch;
is_InquireImageMem (hCam, pcSource, nIDSource, &nX ,&nY, &nBits, &nPitch);

//Create RGB test image
for (int j = 0; j < nY; j++)
{
 for (int i = 0; i < nX*3; i += 3)
 {
 pcSource[i + j*nPitch] = 0; // Blue pixels
 pcSource[i + j*nPitch + 1] = i/3; // Green pixels
 pcSource[i + j*nPitch + 2] = 255; // Red pixels
 }
}

// Create memory for RGB histogram
DWORD bgrBuffer [256*3];

//Create pointer for each histogram color
DWORD * pBlueHisto = bgrBuffer;
DWORD *pGreenHisto = bgrBuffer + 256;
DWORD * pRedHisto = bgrBuffer + 512;

//Retrieve histogram and release memory
is_GetImageHistogram (hCam, nIDSource, IS_CM_RGB8_PACKED, bgrBuffer);
is_FreeImageMem (hCam, pcSource, nIDSource);

© 2013 Thorlabs GmbH244

DCx Cameras

4.3.44 is_GetImageInfo

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetImageInfo (HIDS hCam, INT nImageBufferID, UEYEIMAGEINFO* pImageInfo, INT nImageInfoSize)

Description

Input parameters

Contents of the UEYEIMAGEINFO structure

Status flags in UEYEIMAGEINFO::dwIoStatus

Contents of the UEYETIME structure

Return values

Related functions

Code sample

Description

is_GetImageInfo() provides additional information on the images you take. The function returns a timestamp
indicating the time of image capture, and the states of the camera I/Os at that point in time. To get information on
the last image that was taken, call is_GetImageInfo() directly after receiving the IS_FRAME event.

Using the function with USB DCx Cameras

The u64TimestampDevice timestamp returns the time when image data transfer to the PC was completed.

The UEYETIME structure returns the timestamp (with a resolution of 1 ms) synchronized with the PC system time.

Attention

Image buffers that are part of a sequence need to be locked using is_LockSeqBuf() . This is important to
ensure correct assignment between image data and image information. Otherwise, it may happen that an image
buffer is filled with new image data. In this case, the image information will not match the image data any more.

Input parameters

hCam Camera handle

nImageBufferID ID of the image buffer for which information is requested

pImageInfo Pointer to a UC480IMAGEINFO type structure to which
the information will be written

nImageInfoSize Size of the structure

Contents of the UC480IMAGEINFO structure

DWORD dwFlags Internal status flags (currently not used)

BYTE byReserved1[4] Reserved

unsigned long long u64TimestampDevice Internal timestamp of image capture (tick
count of the camera in 0.1 µ s steps)

UEYETIME TimestampSystem Structure with timestamp information in PC
system time format, see UEYETIME
below

DWORD dwIoStatus With DCC3240x Cameras: Returns the
states of the digital I/Os at the time of image
capture:

Digital input (trigger): Pending signal

GPIO as input: Pending signal

GPIO as output: Set level

244

244

244

245

245

245

246

246

289

245

© 2013 Thorlabs GmbH

4 Programming (SDK)

245

With all other cameras, dwIoStatus is
empty. See dwIOStatus below.

WORD wAOIIndex AOI index (only AOI sequence mode of
DCC1240x)

WORD wAOICycle Readout cycles (only AOI sequence mode of
DCC1240x)

unsigned long long u64FrameNumber Internal image number

DWORD dwImageBuffers Number of image buffers existing in the
camera

DWORD dwImageBuffersInUse Number of image buffers in use in the
camera

DWORD dwReserved3 Reserved

DWORD dwImageHeight Image height

DWORD dwImageWidth Image width

Status flags in UC480IMAGEINFO::dwIoStatus

Bit combination State of digital input State of GPIO 1 State of GPIO 2

000 0 0 0

001 0 0 1

010 0 1 0

011 0 1 1

100 1 0 0

101 1 0 1

110 1 1 0

111 1 1 1

Contents of the UC480IMAGEINFO::UEYETIME structure

WORD wYear Timestamp year

WORD wMonth Timestamp month

WORD wDay Timestamp day

WORD wHour Timestamp hour

WORD wMinute Timestamp minute

WORD wSecond Timestamp second

WORD wMilliseconds Timestamp millisecond

WORD wReserved[2] Reserved

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

This may happen when e.g.:

more memory is allocated than the UC480IMAGEINFO structure
needs

nImageBufferID <= 0

pImageInfo == NULL

nImageInfoSize <= 0

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

245

© 2013 Thorlabs GmbH246

DCx Cameras

Related functions

is_CaptureStatus()

is_LockSeqBuf()

is_UnlockSeqBuf()

is_SetImageMem()

is_IO()

Example

UEYEIMAGEINFO ImageInfo;
// Read out camera timestamp
INT nRet = is_GetImageInfo(m_hCam,
 m_lMemoryId, &ImageInfo, sizeof(ImageInfo));
if (nRet == IS_SUCCESS)
{
unsigned long long u64TimestampDevice;
 u64TimestampDevice = ImageInfo.u64TimestampDevice;

CString Str; // Read out timestamp in system time
Str.Format("%02d.%02d.%04d, %02d:%02d:%02d:%03d",
 ImageInfo.TimestampSystem.wDay,
 ImageInfo.TimestampSystem.wMonth,
 ImageInfo.TimestampSystem.wYear,
 ImageInfo.TimestampSystem.wHour,
 ImageInfo.TimestampSystem.wMinute,
 ImageInfo.TimestampSystem.wSecond,
 ImageInfo.TimestampSystem.wMilliseconds);

DWORD dwTotalBuffers = ImageInfo.dwImageBuffers;
DWORD dwUsedBuffers = ImageInfo.dwImageBuffersInUse;
}

Sample Program

uc480Timestamp (C++)

174

289

354

337

280

© 2013 Thorlabs GmbH

4 Programming (SDK)

247

4.3.45 is_GetImageMem

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetImageMem (HIDS hCam, VOID** pMem)

Description

is_GetImageMem() returns the pointer to the starting address of the active image memory. If you use ring
buffering, is_GetImageMem() returns the starting address of the image memory last used for image capturing.

Input parameters

hCam Camera handle

pMem Pointer to the starting address of the image memory

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_GetImageMemPitch()

is_AllocImageMem()

is_AddToSequence()

is_SetImageMem()

is_SetAllocatedImageMem()

Sample programs

uc480PixelPeek (C++)

248

157

156

337

301

© 2013 Thorlabs GmbH248

DCx Cameras

4.3.46 is_GetImageMemPitch

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetImageMemPitch (HIDS hCam, INT* pPitch)

Description

is_GetImageMemPitch() returns the line increment (in bytes). The line increment is defined as the number of
bytes from the beginning of a line to the beginning of the next line. It may be greater than suggested by the
parameters passed when calling is_AllocImageMem() . The line increment is always a number that can be
divided by 4.

The line increment is calculated as:

line = width * int[(bitspixel + 7) / 8]

lineinc = line + adjust

adjust = 0 – if line can be divided by 4 without remainder

adjust = 4 - rest(line / 4) if line cannot be divided by 4 without remainder

Input parameters

hCam Camera handle

pPitch Pointer to the variable containing the line increment

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_GetImageMem()

is_AllocImageMem()

is_AddToSequence()

is_SetImageMem()

is_SetAllocatedImageMem()

157

247

157

156

337

301

© 2013 Thorlabs GmbH

4 Programming (SDK)

249

4.3.47 is_GetNumberOfCameras

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetNumberOfCameras (INT* pnNumCams)

Description

is_GetNumberOfCameras() returns the number of DCx Cameras connected to the PC.

Input parameters

pNumCams Returns the number of connected cameras.

Return values

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_SUCCESS Function executed successfully

Related functions

is_GetCameraList()

is_DeviceInfo()

233

196

© 2013 Thorlabs GmbH250

DCx Cameras

4.3.48 is_GetOsVersion

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetOsVersion ()

Description

is_GetOsVersion() returns the operating system type used at runtime.

Input parameters

<none>

Return values

IS_OS_WIN2000 Windows 2000 operating system

IS_OS_WINXP Windows XP operating system

IS_OS_WINSERVER2003 Windows Server 2003 operating system

IS_OS_WINVISTA Windows Vista operating system

IS_OS_WIN7 Windows 7 operating system

IS_OS_LINUX26 Linux 2.6 operating system

IS_OS_UNDETERMINED Unknown operating system

Related functions

is_GetDLLVersion() 238

© 2013 Thorlabs GmbH

4 Programming (SDK)

251

4.3.49 is_GetSensorInfo

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetSensorInfo (HIDS hCam, SENSORINFO* pInfo)

Description

Using is_GetSensorInfo(), you can query information about the sensor type used in the camera. The
information contained in the SENSORINFO structure is listed in the table below.

The ueye.h file provides a complete up-to-date list of all supported sensor types. To quickly locate the list,
search the file for the keyword "Sensor types".

Input parameters

hCam Camera handle

pInfo Pointer to the SENSORINFO Structure

Contents of the SENSORINFO structure

WORD SensorID Returns the sensor type (e.g.: IS_SENSOR_xxxxx_x).

Char strSensorName[32] Returns the camera model (e.g.: xxxxxxx-x).

Char nColorMode Returns the sensor color mode.
IS_COLORMODE_BAYER
IS_COLORMODE_MONOCHROME

DWORD nMaxWidth Returns the maximum image width

DWORD nMaxHeight Returns the maximum image height

BOOL bMasterGain Indicates whether the sensor provides analog master gain

BOOL bRGain Indicates whether the sensor provides analog red channel gain

BOOL bGGain Indicates whether the sensor provides analog green channel gain

BOOL bBGain Indicates whether the sensor provides analog blue channel gain

BOOL bGlobShutter Indicates whether the sensor has a global shutter.

TRUE = global shutter

FALSE = rolling shutter

WORD wPixelSize Returns the pixel size in µ m (e.g. 465 is equivalent to 4.65 µ m)

Char Reserved[14] Reserved

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

Related functions

is_GetCameraInfo()

is_CameraStatus()

451

231

172

© 2013 Thorlabs GmbH252

DCx Cameras

4.3.50 is_GetSensorScalerInfo

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetSensorScalerInfo (HIDS hCam,
 SENSORSCALERINFO* pSensorScalerInfo,
 INT nSensorScalerInfoSize)

Description

Using is_GetSensorScalerInfo() you can query information on the image scaling which is supported by
some sensors.

Note

Internal image scaling is only supported by DCC1240x and DCC3240x series sensors.

Input parameters

hCam Camera handle

pSensorScalerInfo Pointer to a SENSORSCALERINFO type structure to
which the information will be written

nSensorScalerInfoSize Size of the structure

Contents of the SENSORSCALERINFO structure

INT nCurrMode Returns the current mode

INT nNumberOfSteps Returns the number of steps for the scaling factor

double dblFactorIncrement Returns the increment for the scaling factor

double dblMinFactor Returns the minimum scaling factor

double dblMaxFactor Returns the maximum scaling factor

double dblCurrFactor Returns the current scaling factor

INT nSupportedModes Returns the supported function modes, see
is_SetSensorScaler()

BYTE bReserved[84] Reserved

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

Related functions

is_SetSensorScaler()

343

343

© 2013 Thorlabs GmbH

4 Programming (SDK)

253

4.3.51 is_GetSupportedTestImages

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetSupportedTestImages (HIDS hCam, INT* SupportedTestImages)

Description

is_GetSupportedTestImages() returns all test images supported by the camera. You can enable the sensor
test image feature using is_SetSensorTestImage() .

Input parameters

hCam Camera handle

SupportedTestImages Returns a bit mask of all test images supported by
the camera.

IS_TEST_IMAGE_NONE No test image

IS_TEST_IMAGE_WHITE White image

IS_TEST_IMAGE_BLACK Black image

IS_TEST_IMAGE_HORIZONTAL_GREYSCALE Horizontal grayscale

IS_TEST_IMAGE_VERTICAL_GREYSCALE Vertical grayscale

IS_TEST_IMAGE_DIAGONAL_GREYSCALE Diagonal grayscale

IS_TEST_IMAGE_WEDGE_GRAY_SENSOR Gray wedges, generated by the sensor

IS_TEST_IMAGE_WEDGE_COLOR Color wedges

IS_TEST_IMAGE_ANIMATED_WEDGE_GRAY_SENSOR Gray wedges, animated, generated by the sensor

IS_TEST_IMAGE_ANIMATED_WEDGE_COLOR Color wedges, animated

IS_TEST_IMAGE_COLOR_BARS1 Color bars

IS_TEST_IMAGE_GREY_AND_COLOR_BARS Gray and color bars

IS_TEST_IMAGE_MOVING_GREY_AND_COLOR_BARS Gray and color bars, animated

IS_TEST_IMAGE_ANIMATED_LINE Line, animated

IS_TEST_IMAGE_ALTERNATE_PATTERN Alternating pattern (raw Bayer mode only)

IS_TEST_IMAGE_RAMPING_PATTERN Diagonal color pattern

IS_TEST_IMAGE_MONOCHROME_HORIZONTAL_BARS Monochrome bars, horizontal

IS_TEST_IMAGE_MONOCHROME_VERTICAL_BARS Monochrome bars, vertical

IS_TEST_IMAGE_COLDPIXEL_GRID Camera image overlaid with a grid of blue dots

IS_TEST_IMAGE_HOTPIXEL_GRID Camera image overlaid with a grid of red dots

IS_TEST_IMAGE_VARIABLE_GREY Adjustable grayscale image

IS_TEST_IMAGE_VARIABLE_RED_PART Image with adjustable red content

IS_TEST_IMAGE_VARIABLE_GREEN_PART Image with adjustable green content

IS_TEST_IMAGE_VARIABLE_BLUE_PART Image with adjustable blue content

345

© 2013 Thorlabs GmbH254

DCx Cameras

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

Related functions

is_SetSensorTestImage()

is_GetTestImageValueRange()

345

255

© 2013 Thorlabs GmbH

4 Programming (SDK)

255

4.3.52 is_GetTestImageValueRange

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetTestImageValueRange (HIDS hCam,
 INT TestImage,
 INT* TestImageValueMin,
 INT* TestImageValueMax)

Description

Using is_GetTestImageValueRange(), you can query the value range of the additional parameter required for
some camera test images. You can enable the sensor test image feature using is_SetSensorTestImage() .

Input parameters

hCam Camera handle

TestImage Test image for which the value range is queried

TestImageValueMin Minimum value

TestImageValueMax Maximum value

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

In this case, the TestImageValueMin and
TestImageValueMax parameters are equal to 0.

IS_SUCCESS Function executed successfully

Related functions

is_GetSupportedTestImages()

is_SetSensorTestImage()

345

253

345

© 2013 Thorlabs GmbH256

DCx Cameras

4.3.53 is_GetTimeout

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetTimeout (HIDS hCam, UINT nMode, UINT* pTimeout)

Description

Using is_GetTimeout(), you can read out user-defined timeout values from the uc480 API.

For further information, please refer to the How to proceed: Timeout values for image capture section.

Input parameters

hCam Camera handle

nMode Selects the timeout value to be returned

IS_TRIGGER_TIMEOUT Returns the timeout value in steps of 10 ms for triggered image
capture

pTimeout Pointer to the variable that holds the timeout value. Returns 0 if the
default value of the uc480 API is used.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_SUCCESS Function executed successfully

Related functions

is_SetTimeout()

is_CaptureVideo()

is_FreezeVideo()

is_SetExternalTrigger()

Example

// Return user-defined timeout
UINT nTimeout;
INT ret = is_GetTimeout(hCam, IS_TRIGGER_TIMEOUT, &nTimeout);

135

350

177

223

327

© 2013 Thorlabs GmbH

4 Programming (SDK)

257

4.3.54 is_GetUsedBandwidth

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetUsedBandwidth (HIDS hCam)

Description

is_GetUsedBandwidth() returns the bus bandwidth (in MByte/s) currently used by all initialized or selected
cameras. This is an approximate value which is calculated based on the pixel clock that has been set and the data
format (bits per pixel). The actual data load on the bus can slightly deviate from this value.

Input parameters

hCam Camera handle

Return values

INT value The total current bus bandwidth (in MByte/s)

Related functions

is_PixelClock() 294

© 2013 Thorlabs GmbH258

DCx Cameras

4.3.55 is_GetVsyncCount

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_GetVsyncCount (HIDS hCam, long* pIntr, long* pActIntr)

Description

is_GetVsyncCount() reads out the VSYNC counter. It will be incremented by 1 each time the sensor starts
capturing an image.

Input parameters

hCam Camera handle

pIntr Current VSYNC count

pActIntr Current Frame SYNC count

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_GetFramesPerSecond() 240

© 2013 Thorlabs GmbH

4 Programming (SDK)

259

4.3.56 is_HasVideoStarted

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_HasVideoStarted (HIDS hCam, BOOL* pbo)

Description

Using is_HasVideoStarted(), you can check whether the image digitizing process has started. This function
is helpful when the is_FreezeVideo() function was called with the IS_DONT_WAIT parameter.

Input parameters

hCam Camera handle

pbo Returns the digitizing status:

0 = Image capturing has not started yet.

1 = Image capturing has started.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_FreezeVideo()

is_IsVideoFinish()

223

223

288

© 2013 Thorlabs GmbH260

DCx Cameras

4.3.57 is_HotPixel

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_HotPixel (HIDS hCam, UINT nCommand, void* pParam, UINT nSizeOfParam)

Description

is_HotPixel() configures the correction of sensor hot pixels. The correction is performed by the software. The
hot pixel list is stored in the camera's non-volatile EEPROM. Some sensor models can also correct hot pixels
directly in the sensor.

For further information on hot pixel correction, please refer to Basics: Hot pixels .

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the nSizeOfParam
input parameter.

Attention

This correction will not work with subsampling or with binning factors greater than 2.

Note

Previous hot pixel functions

The is_HotPixel() function comprises all hot pixel correction functions. The following uc480 API commands
are therefore obsolete:

is_SetBadPixelCorrection()

is_SetBadPixelCorrectionTable()

is_LoadBadPixelCorrectionTable()

is_SaveBadPixelCorrectionTable()

See also Obsolete functions

Input parameters

hCam Camera handle

nCommand

IS_HOTPIXEL_DISABLE_CORRECTION Disables hot pixel correction (Example 1)

IS_HOTPIXEL_ENABLE_CAMERA_CORRECTION Enables hot pixel correction using the hot pixel list(s)
stored in the camera EEPROM.

IS_HOTPIXEL_ENABLE_SOFTWARE_USER_CORREC
TION

Enables hot pixel correction using the user's hot pixel list
stored in the computer. This requires the user's hot pixel
list to be set
(IS_HOTPIXEL_SET_SOFTWARE_USER_LIST)

IS_HOTPIXEL_ENABLE_SENSOR_CORRECTION Enables sensor's own hot pixel correction function (if
available).

IS_HOTPIXEL_DISABLE_SENSOR_CORRECTION Disables the sensor's own hot pixel correction function.

IS_HOTPIXEL_GET_CORRECTION_MODE Returns the currently set hot pixel correction mode
(Example 2)

IS_HOTPIXEL_GET_SUPPORTED_CORRECTION_MO
DES

Returns the supported hot pixel correction modes.The
return value is a bitmask with the following constants
(combined by OR):

IS_HOTPIXEL_ENABLE_CAMERA_CORRECTION: Hot
pixel correction is possible via the hot pixel list in the
camera EEPROM.

28

379

262

262

© 2013 Thorlabs GmbH

4 Programming (SDK)

261

hCam Camera handle

IS_HOTPIXEL_ENABLE_SOFTWARE_USER_CORRECTI
ON: Hot pixel correction is possible via the user-defined
hot pixel list.

IS_HOTPIXEL_ENABLE_SENSOR_CORRECTION: Hot
pixel correction is possible via the sensor-internal hot
pixel correction.

IS_HOTPIXEL_GET_SOFTWARE_USER_LIST_EXIS
TS

Indicates whether the user-defined hot pixel list exists in
the computer (Example 3)

IS_HOTPIXEL_GET_SOFTWARE_USER_LIST_NUMB
ER

Returns the number of hot pixels in the user-defined hot
pixel list stored in the computer.

IS_HOTPIXEL_GET_SOFTWARE_USER_LIST Returns the user-defined hot pixel list stored in the
computer.

IS_HOTPIXEL_SET_SOFTWARE_USER_LIST Sets the user-defined hot pixel list that is stored in the
computer.

IS_HOTPIXEL_SAVE_SOFTWARE_USER_LIST
IS_HOTPIXEL_SAVE_SOFTWARE_USER_LIST_UNI
CODE

Saves the user-defined hot pixel list to a file. The function
can also be used with Unicode file names. (Example 4)

IS_HOTPIXEL_LOAD_SOFTWARE_USER_LIST
IS_HOTPIXEL_LOAD_SOFTWARE_USER_LIST_UNI
CODE

Loads the user-defined hot pixel list from a file. The
function can also be used with Unicode file names.

IS_HOTPIXEL_GET_CAMERA_FACTORY_LIST_EXI
STS

Indicates whether the factory-set hot pixel list exists.

IS_HOTPIXEL_GET_CAMERA_FACTORY_LIST_NUM
BER

Returns the number of hot pixels in the factory-set hot
pixel list.

IS_HOTPIXEL_GET_CAMERA_FACTORY_LIST Returns the factory-set hot pixel list.

IS_HOTPIXEL_GET_CAMERA_USER_LIST_EXISTS Indicates whether the user-defined hot pixel list exists in
the camera EEPROM.

IS_HOTPIXEL_GET_CAMERA_USER_LIST_NUMBER Returns the number of hot pixels in the user-defined hot
pixel list stored in the camera EEPROM.

IS_HOTPIXEL_GET_CAMERA_USER_LIST Returns the user-defined hot pixel list stored in the
camera EEPROM.

IS_HOTPIXEL_SET_CAMERA_USER_LIST Sets the user-defined hot pixel list stored in the camera
EEPROM (Example 5)

IS_HOTPIXEL_DELETE_CAMERA_USER_LIST Deletes the user-defined hot pixel list from the camera
EEPROM.

IS_HOTPIXEL_GET_CAMERA_USER_LIST_MAX_NU
MBER

Returns the maximum number of hot pixels that the user
can store in the camera EEPROM.

IS_HOTPIXEL_GET_MERGED_CAMERA_LIST_NUMB
ER

Returns the number of hot pixels in a merged list that
combines the entries from the factory-set hot pixel list with
those of the user-defined hot pixels list stored in the
camera EEPROM.

IS_HOTPIXEL_GET_MERGED_CAMERA_LIST Returns the merged list (Example 6)

pParam Pointer to a function parameter, whose function depends
on nCommand.

nSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match

262

263

263

263

© 2013 Thorlabs GmbH262

DCx Cameras

the current camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

Example 1

// Enable/disable correction
INT nRet = is_HotPixel(hCam, IS_HOTPIXEL_DISABLE_CORRECTION, NULL, NULL);
nRet = is_HotPixel(hCam, IS_HOTPIXEL_ENABLE_CAMERA_CORRECTION, NULL, NULL);
nRet = is_HotPixel(hCam, IS_HOTPIXEL_ENABLE_SOFTWARE_USER_CORRECTION, NULL, NULL);
nRet = is_HotPixel(hCam, IS_HOTPIXEL_ENABLE_SENSOR_CORRECTION, NULL, NULL);
nRet = is_HotPixel(hCam, IS_HOTPIXEL_DISABLE_SENSOR_CORRECTION, NULL, NULL);

Example 2

// Read out current mode
INT nMode = 0;
INT nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_CORRECTION_MODE,
 (void*)&nMode, sizeof(nMode));
// Query supported modes
INT nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_SUPPORTED_CORRECTION_MODES,
 (void*)&nMode, sizeof(nMode));

Example 3

// Query user-defined hot pixel list
INT nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_SOFTWARE_USER_LIST_EXISTS, NULL, NULL);
if (nRet == IS_SUCCESS)
{
 // Query the number of hot pixels in the user-defined list
 INT nNumber = 0;
 nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_SOFTWARE_USER_LIST_NUMBER,
 (void*)&nNumber, sizeof(nNumber));
 if (nRet == IS_SUCCESS)
 {
 // Allocate sufficient memory. Each hot pixel needs two WORDS
 // memory space.
 // Additional memory space of one WORD per hot pixel is required for numbering.
 WORD *pList = new WORD[1 + 2 * nNumber];
 nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_SOFTWARE_USER_LIST,
 (void*)pList, (1 + 2 * nNumber) * sizeof(WORD));

 // Change a value and save the list.
 // The number of the hot pixel has to be specified in pList[0]
 pList[1] = 100;
 nRet = is_HotPixel(hCam, IS_HOTPIXEL_SET_SOFTWARE_USER_LIST,
 (void*)pList, (1 + 2 * nNumber) * sizeof(WORD));

 // Delete unneeded list
 delete [] pList;
 }
}

© 2013 Thorlabs GmbH

4 Programming (SDK)

263

Example 4

// Save user-defined list to file
char File1[100];
ZeroMemory(File1, sizeof(File1));
strcpy(File1, "c:\\test.txt");

nRet = is_HotPixel(hCam, IS_HOTPIXEL_LOAD_SOFTWARE_USER_LIST, (void*)File1, 0);

nRet = is_HotPixel(hCam, IS_HOTPIXEL_SAVE_SOFTWARE_USER_LIST, (void*)File1, 0);

// Unicode
wchar_t File2[100];
ZeroMemory(File2, sizeof(File2));
wcscpy(File2, L"c:\\test.txt");

nRet = is_HotPixel(hCam, IS_HOTPIXEL_LOAD_SOFTWARE_USER_LIST_UNICODE, (void*)File2, 0);

nRet = is_HotPixel(hCam, IS_HOTPIXEL_SAVE_SOFTWARE_USER_LIST_UNICODE, (void*)File2, 0);

Example 5

// Save user-defined list to the camera EEPROM
INT nNumber = 0;
INT nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_CAMERA_USER_LIST_MAX_NUMBER,
 (void*)&nNumber , sizeof(nNumber));
if (nRet == IS_SUCCESS)
{
 // Write the maximum number of hot pixels to EEPROM
 WORD *pList = new WORD[1 + 2 * nNumber];
 pList[0] = nNumber;
 for (int i = 0; i < nNumber; i++)
 {
 pList[1 + 2 * i] = x_value;
 pList[2 + 2 * i] = y_value;
 }

 nRet = is_HotPixel(hCam, IS_HOTPIXEL_SET_CAMERA_USER_LIST,
 (void*)pList, (1 + 2 * nNumber) * sizeof(WORD));

 delete [] pList;

 // Delete user-defined EEPROM list
 nRet = is_HotPixel(hCam, IS_HOTPIXEL_DELETE_CAMERA_USER_LIST, NULL, NULL);
}

Example 6

// Return combined list
INT nNumber = 0;
INT nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_MERGED_CAMERA_LIST_NUMBER,
 (void*)&nNumber , sizeof(nNumber));
if (nRet == IS_SUCCESS)
{
 // Allocate sufficient memory. Each hot pixel needs two WORDS
 // memory space.
 // Additional memory space of one WORD per hot pixel is required for numbering.
 WORD *pList = new WORD[1 + 2 * nNumber];
 nRet = is_HotPixel(hCam, IS_HOTPIXEL_GET_MERGED_CAMERA_LIST,
 (void*)pList, (1 + 2 * nNumber) * sizeof(WORD));

 // Delete unneeded list
 delete [] pList;
}

© 2013 Thorlabs GmbH264

DCx Cameras

4.3.58 is_ImageFile

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_ImageFile (HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

is_ImageFile() loads and save an image from or to a file. The image must be BMP, JPEG or PNG format. The
image is loaded into the active image memory or read-out from the active image memory.

Note

When saving an image is_FreezeVideo() sjould not be called with the IS_DONT_WAIT parameter, because
the image acquisition might not be completed at the time of saving.

The bitmap is stored with the color depth that was used when allocating the image memory (in DIB mode) or that
was set for the current color mode (in Direct3D mode). You can save images with a bit depth of more than 8 bit in
the PNG format. 12 bit formats are converted into 16 bit. JPEG files are always saved with a color depth of 8 or 24
bits.

Note

In Direct3D or OpenGL mode, overlay data is not saved.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Note

The following functions are obsolete by the is_ImageFile() function:

is_LoadImage()

is_LoadImageMem()

is_SaveImage()

is_SaveImageMem()

is_SaveImageEx()

is_SaveImageMemEx()

See also: Obsolete functions

Input parameters

hCam Camera handle

nCommand

IS_IMAGE_FILE_CMD_LOAD Loads an image file (bmp, jpg, png) (Example 1)

The function can be used with UNICODE file names.

IS_IMAGE_FILE_CMD_SAVE Saves an image file (bmp, jpg, png) (Example 2)

The function can be used with UNICODE file names.

pParam Pointer to a function parameter, whose function depends
on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

223

379

266

266

© 2013 Thorlabs GmbH

4 Programming (SDK)

265

Contents of the IMAGE_FILE_PARAMS structure

wchar_t pwchFileName Name of the file to be loaded/saved (Unicode).

If NULL is passed, the "Open file"/"Save as" dialog
opens.

UINT nFileType File type to be saved:

IS_IMG_BMP

IS_IMG_JPG

IS_IMG_PNG

UINT nQuality Sets the image quality for JPEG and PNG (and
therefore the compression). The higher the value, the
better the quality is:

100 = maximum quality with minimum compression

If the parameter is set to 0, the the default value of 75
is used.

For BMP the parameter is ignored.

char ppcImageMem When loading:

Pointer to an image memory and pointer to the
corresponding ID. If both pointers are NULL the image is
loaded into the active image memory. If both pointers
are valid a new memory is allocated. This memory must
be released with is_FreeImageMem() .

When saving:

Pointer to an image memory and pointer to the
corresponding ID. If both pointers are NULL the image is
saved from the active image memory. If both pointers
are valid the corresponding memory is used.

UINT pnImageID

BYTE reserved[32] reserved

Return values

IS_FILE_READ_INVALID_BMP_ID The specified file is not a valid bitmap file.

IS_FILE_READ_OPEN_ERROR The file cannot be opened.

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

Related functions

is_GetImageMem()

is_SetImageMem()

222

247

337

© 2013 Thorlabs GmbH266

DCx Cameras

Example 1

IMAGE_FILE_PARAMS ImageFileParams;

ImageFileParams.pwchFileName = NULL;
ImageFileParams.pnImageID = NULL;
ImageFileParams.ppcImageMem = NULL;
ImageFileParams.nQuality = 0;

// Load bitmap into active memory (with file open dialog)
ImageFileParams.nFileType = IS_IMG_BMP;
INT nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_LOAD, (void*)&ImageFileParams,
 sizeof(ImageFileParams));

// Load jpeg into active memory (with file open dialog)
ImageFileParams.nFileType = IS_IMG_JPG;
nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_LOAD, (void*)&ImageFileParams,
 sizeof(ImageFileParams));

// Alloc image memory and load bitmap into it (without file open dialog)
char* pcMemory = NULL;
UINT nID = 0;
ImageFileParams.pwchFileName = L"c:\\test.bmp";
ImageFileParams.pnImageID = &nID;
ImageFileParams.ppcImageMem = &pcMemory;
ImageFileParams.nFileType = IS_IMG_BMP;
nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_LOAD, (void*)&ImageFileParams,
 sizeof(ImageFileParams));

Example 2

IMAGE_FILE_PARAMS ImageFileParams;

ImageFileParams.pwchFileName = NULL;
ImageFileParams.pnImageID = NULL;
ImageFileParams.ppcImageMem = NULL;
ImageFileParams.nQuality = 0;

// Save bitmap from active memory to file (with file open dialog)
ImageFileParams.nFileType = IS_IMG_BMP;
INT nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,
 sizeof(ImageFileParams));

// Save jpeg from active memory with quality 80 (without file open dialog)
ImageFileParams.pwchFileName = L"c:\\test.jpg";
ImageFileParams.nFileType = IS_IMG_JPG;
ImageFileParams.nQuality = 80;
nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,
 sizeof(ImageFileParams));

// Save png from special memory with quality 50 (with file open dialog)
 ImageFileParams.pwchFileName = NULL; ImageFileParams.pnImageID = &nID; // valid ID
ImageFileParams.ppcImageMem = &pcMemory; // valid buffer
ImageFileParams.nFileType = IS_IMG_PNG;
ImageFileParams.nQuality = 50;
nRet = is_ImageFile(m_hCam, IS_IMAGE_FILE_CMD_SAVE, (void*)&ImageFileParams,
 sizeof(ImageFileParams));

© 2013 Thorlabs GmbH

4 Programming (SDK)

267

4.3.59 is_ImageFormat

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_ImageFormat (HIDS hCam,
 UINT nCommand,
 void *pParam,
 UINT nSizeOfParam)

Description

Using is_ImageFormat(), you can query a list of possible image sizes and set a new image format if supported
by your DCx Camera model. This is useful for sensors that do not support a free selection of the area of interest or
image format. Using the AOI, binning/subsampling or scaling functions, the driver sets the selected image format to
achieve the best possible image quality. For a complete list of available image formats see table "Image formats"

 below.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the nSizeOfParam
input parameter.

Input parameters

hCam Camera handle

nCommand

IMGFRMT_CMD_GET_LIST Returns a list of all image formats supported by the
sensor.

More details

You can query the number of entries in the list with
IMGFRMT_CMD_GET_NUM_ENTRIES.

pParam: Pointer to list of type IMAGE_FORMAT_LIST
. The list must be preallocated as specified below.

nSizeOfParam: Size of the list
Size of (IMAGE_FORMAT_LIST + (number of list entries
- 1) *
Size of (IMAGE_FORMAT_INFO))

IMGFRMT_CMD_GET_NUM_ENTRIES Returns the number of entries in the list.

More details

pParam: Pointer to variable of type UINT returning the
number of list entries.

nSizeOfParam: 4

IMGFRMT_CMD_SET_FORMAT Sets the desired image format.

More details

pParam: Pointer to variable of type UINT passing the
format ID of the desired image format.

nSizeOfParam: 4

IMGFRMT_CMD_GET_ARBITRARY_AOI_SUPPORTED Returns if the sensor supports a free selection of the area
of interest (AOI).

More details

pParam: Pointer to variable of type UINT indicating if
free AOI selection is supported:
0 = No free AOI supported
1 = Free AOI supported

nSizeOfParam: 4

pParam Pointer to a function parameter, whose function depends
on nCommand.

269

268

268

© 2013 Thorlabs GmbH268

DCx Cameras

hCam Camera handle

nSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

Contents of the IMAGE_FORMAT_LIST list of image formats

UINT nSizeOfListEntry Must be preset with the size of a list entry in bytes

UINT nNumListElements Must be preset with the number of list entries (from
IMGFRMT_CMD_GET_NUM_ENTRIES)

UINT nReserved[4] Reserved

IMAGE_FORMAT_INF
O

FormatInfo[0] First entry in the list.

After having been filled by IMGFRMT_CMD_GET_LIST, the list
contains additional entries FormatInfo[1]…FormatInfo
[nNumListElements-1].

Contents of the list entry IMAGE_FORMAT_INFO

INT nFormatID Format ID of the specified image format (see table "Image
formats" below)

UINT nWidth Width of the area of interest

UINT nHeight Height of the area of interest

UINT nX0 Start point of the area of interest (X)

UINT nY0 Start point of the area of interest (Y)

UINT nSupportedCaptureModes Image capture modes supported for this format (see table
below)

UINT nBinningMode Binning mode used

UINT nSubsamplingMode Subsampling mode used

IS_CHAR strFormatName[64] Description of the format

double dSensorScalerFactor Scaling factor used (only sensors that support scaling).

UINT nReserved[24] Reserved

Possible values for CAPTUREMODE

CAPTMODE_SINGLE Freerun mode, single frame (freerun snap)

CAPTMODE_FREERUN Freerun mode, continuous (freerun live)

CAPTMODE_TRIGGER_SOFT_SINGLE Software triggered mode, single frame

CAPTMODE_TRIGGER_SOFT_CONTINUOUS Software triggered mode, continuous

CAPTMODE_TRIGGER_HW_SINGLE Hardware triggered mode, single frame

CAPTMODE_TRIGGER_HW_CONTINUOUS Hardware triggered mode, continuous

For further information on the image capture modes, see also in the Basics: Operating modes chapter.

269

343

17

© 2013 Thorlabs GmbH

4 Programming (SDK)

269

Image formats of CMOS sensors

Format
ID

Resolution Name
Camera model

DCC1645C DCC1545M DCC1240x

1 3264x2448 (8M)

2 3264x2176 (8M 3:2)

3 3264x1836 (8M 16:9)

4 2592x1944 (5M)

5 2048x1536 (3M)

6 1920x1080 (Full HD 16:9)

7 1632x1224 (2M)

8 1280x960 (1.2M 4:3) X X X

9 1280x720 (HD 16:9) X X X

11 960x480 (WVGA 2:1) X X X

12 800x480 (WVGA) X X X

13 640x480 (VGA) X X X

14 640x360 (VGA 16:9) X X X

15 400x240 (WQVGA) X X X

16 352x288 (CIF) X X X

17 288x352 (CIF Portrait) X X X

18 320x240 (QVGA) X X X

19 240x320 (QVGA Portrait) X X X

20 1600x1200 (UXGA)

21 3840x2748 (10M)

22 1920x1080 (Full HD 16:9, HQ)

23 2560x1920 (5M)

24 768x576 (CCIR) X X X

25 1280x1024 (1.3M SXGA) X X X

26 2448x2048 (5M)

27 1024x768 (XGA) X X X

28 1024x1024 (1M) X X

29 800x600 (SVGA) X X X

30 1360x1024 (1.4M 4:3)

© 2013 Thorlabs GmbH270

DCx Cameras

Image formats of CCD sensors

Format
ID

Resolution Name
Camera model

DCU-223x DCU-224x

1 3264x2448 (8M)

2 3264x2176 (8M 3:2)

3 3264x1836 (8M 16:9)

4 2592x1944 (5M)

5 2048x1536 (3M)

6 1920x1080 (Full HD 16:9)

7 1632x1224 (2M)

8 1280x960 (1.2M 4:3) X

9 1280x720 (HD 16:9) X

11 960x480 (WVGA 2:1) X X

12 800x480 (WVGA) X X

13 640x480 (VGA) X X

14 640x360 (VGA 16:9) X

15 400x240 (WQVGA) X

16 352x288 (CIF) X

17 288x352 (CIF Portrait) X

18 320x240 (QVGA) X

19 240x320 (QVGA Portrait) X

20 1600x1200 (UXGA)

21 3840x2748 (10M)

22 1920x1080 (Full HD 16:9, HQ)

23 2560x1920 (5M)

24 768x576 (CCIR) X X

25 1280x1024 (1.3M SXGA) X

26 2448x2048 (5M)

27 1024x768 (XGA) X X

28 1024x1024 (1M) X

29 800x600 (SVGA) X X

30 1360x1024 (1.4M 4:3)

Return values

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence and cannot
be added again.

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver has been
loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no camera
connected or initialization error).

IS_CAPTURE_RUNNING A capturing operation is in progress and must be terminated before
you can start another one.

IS_DR_CANNOT_CREATE_SURFACE The image surface or overlay surface could not be created.

IS_DR_CANNOT_CREATE_TEXTURE The texture could not be created.

IS_DR_CANNOT_CREATE_VERTEX_BUFFER The vertex buffer could not be created.

© 2013 Thorlabs GmbH

4 Programming (SDK)

271

IS_DR_DEVICE_OUT_OF_MEMORY Not enough graphics memory available.

IS_DR_LIBRARY_NOT_FOUND The DirectRenderer library could not be found.

IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to store the image in
the desired format.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match the current
camera model.

IS_INVALID_CAPTURE_MODE The function can not be executed in the current camera operating
mode (free run, trigger or standby).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_INVALID_PIXEL_CLOCK This setting is not available for the currently set pixel clock
frequency.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the versions of
the uc480_api.dll (API) and the driver file (uc480_usb.sys) do
not match.

IS_NO_ACTIVE_IMG_MEM No active image memory available. You must set the memory to
active using the is_SetImageMem() function or create a
sequence using the is_AddToSequence() function.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_NULL_POINTER Invalid array

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the buffer is invalid.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could not be
terminated within the allowable period.

IS_TRIGGER_ACTIVATED The function cannot be used because the camera is waiting for a
trigger signal.

© 2013 Thorlabs GmbH272

DCx Cameras

Related functions

is_AOI()

is_SetBinning()

is_SetSubSampling()

Example

HIDS hCam;
char strCamFileName[256];
int nRet;

// Get number of available formats and size of list
UINT count;
UINT bytesNeeded = sizeof(IMAGE_FORMAT_LIST);
nRet = is_ImageFormat(hCam, IMGFRMT_CMD_GET_NUM_ENTRIES, &count, 4);
bytesNeeded += (count - 1) * sizeof(IMAGE_FORMAT_INFO);
void* ptr = malloc(bytesNeeded);

// Create and fill list
IMAGE_FORMAT_LIST* pformatList = (IMAGE_FORMAT_LIST*) ptr;
pformatList->nSizeOfListEntry = sizeof(IMAGE_FORMAT_INFO);
pformatList->nNumListElements = count;
nRet = is_ImageFormat(hCam, IMGFRMT_CMD_GET_LIST, pformatList, bytesNeeded);

// Activate trigger mode for capturing high resolution images (USB uEye XS)
nRet = is_StopLiveVideo(hCam, IS_WAIT);
nRet = is_SetExternalTrigger(hCam, IS_SET_TRIGGER_SOFTWARE);

// Prepare for creating image buffers
char* pMem = NULL;
int memID = 0;

// Set each format and then capture an image
IMAGE_FORMAT_INFO formatInfo;
for (int i = 0; i < count; i++)
{
 formatInfo = pformatList->FormatInfo[i];
 int width = formatInfo.nWidth;
 int height = formatInfo.nHeight;

 // Allocate image mem for current format, set format
 nRet = is_AllocImageMem(hCam, width, height, 24, &pMem, &memID);
 nRet = is_SetImageMem(hCam, pMem, memID);
 nRet = is_ImageFormat(hCam, IMGFRMT_CMD_SET_FORMAT, &formatInfo.nFormatID, 4);

 // Capture image
 nRet = is_FreezeVideo(hCam, IS_WAIT);
}

159

310

347

© 2013 Thorlabs GmbH

4 Programming (SDK)

273

4.3.60 is_InitCamera

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_InitCamera (HIDS* phf, HWND hWnd)

Description

is_InitCamera() starts the driver and establishes the connection to the camera. After successful initialization,
this function assigns the camera handle. All subsequent functions require this handle as the first parameter.

When using Direct3D or OpenGL for image display, you can pass a handle to the output window.

Notes

1. Multi-camera environments

When using multiple cameras in parallel operation on a single system, you should assign a unique camera ID to
each camera. To initialize or select a camera with is_InitCamera(), the phCam handle must previously have
been set to the desired camera ID.

To initialize or select the next available camera without specifying a camera ID, phCam has to be preset with 0.

2. Thread safety

We recommend that you call the following functions exclusively from a single thread in order to avoid unpredictable
behavior of the application.

is_InitCamera()

is_SetDisplayMode()

is_ExitCamera()

See also General: Thread programming

Input parameters

phCam Pointer to the camera handle

When you call this function, the pointer value has the following
meaning:

0: The first available camera will be initialized or selected.

1-254: The camera with the specified camera ID will be initialized or
selected.

*phCam |
IS_USE_DEVICE_ID

The camera is opened using the device ID instead of the camera
ID. For details on device ID please refer to the
is_GetCameraList() chapter.

*phCam |
IS_ALLOW_STARTER_FW_UPLOAD

During initialization of the camera, this parameter checks whether a
new version of the starter firmware is required. If it is, the new
starter firmware is updated automatically (only GigE uEye SE/RE/
CP cameras).

To ensure backward compatibility of applications, always call
is_InitCamera() without the IS_ALLOW_STARTER_FW_UPLOAD
parameter first. Only if an error occurs, call the function with this
parameter set (see Example below).

hWnd Pointer to the window where the Direct3D image will be displayed

If hWnd = NULL, DIB mode will be used for image display.

Return values

IS_ALL_DEVICES_BUSY All cameras are in use

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence
and cannot be added again.

273

322

213

453

233

275

© 2013 Thorlabs GmbH274

DCx Cameras

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_CANT_OPEN_REGISTRY Error opening a Windows registry key

IS_CANT_READ_REGISTRY Error reading settings from the Windows registry

IS_CAPTURE_RUNNING A capturing operation is in progress and must be
terminated before you can start another one.

IS_CRC_ERROR A CRC error-correction problem occurred while reading
the settings.

IS_DEVICE_ALREADY_PAIRED The device is already paired.

IS_DEVICE_NOT_COMPATIBLE The device is not compatible to the drivers.

IS_DR_CANNOT_CREATE_SURFACE The image surface or overlay surface could not be
created.

IS_DR_CANNOT_CREATE_TEXTURE The texture could not be created.

IS_DR_CANNOT_CREATE_VERTEX_BUFFER The vertex buffer could not be created.

IS_DR_DEVICE_OUT_OF_MEMORY Not enough graphics memory available.

IS_DR_LIBRARY_NOT_FOUND The DirectRenderer library could not be found.

IS_ERROR_CPU_IDLE_STATES_CONFIGURATION The configuration of the CPU idle has failed.

IS_FILE_WRITE_OPEN_ERROR File cannot be opened for writing or reading.

IS_INCOMPATIBLE_SETTING Because of other incompatible settings the function is
not possible.

IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to store
the image in the desired format.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAPTURE_MODE The function can not be executed in the current camera
operating mode (free run, trigger or standby).

IS_INVALID_DEVICE_ID The device ID is invalid. Valid IDs start from 1 for USB
cameras.

IS_INVALID_EXPOSURE_TIME This setting is not available for the currently set
exposure time.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_INVALID_PIXEL_CLOCK This setting is not available for the currently set pixel
clock frequency.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_ACTIVE_IMG_MEM No active image memory available. You must set the
memory to active using the is_SetImageMem()
function or create a sequence using the
is_AddToSequence() function.

IS_NO_IMAGE_MEM_ALLOCATED The driver could not allocate memory.

IS_NO_IR_FILTER No IR filter available

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

© 2013 Thorlabs GmbH

4 Programming (SDK)

275

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_STARTER_FW_UPLOAD_NEEDED The camera's starter firmware is not compatible with the
driver and needs to be updated.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

IS_TRIGGER_ACTIVATED The function cannot be used because the camera is
waiting for a trigger signal.

Related functions

is_ExitCamera()

is_EnableAutoExit()

is_GetCameraList()

is_SetCameraID()

is_GetCameraInfo()

Example

//Open camera with ID 1
HIDS hCam = 1;
INT nRet = is_InitCamera (&hCam, NULL);

if (nRet != IS_SUCCESS)
{
 //Check if GigE uEye SE needs a new starter firmware
 if (nRet == IS_STARTER_FW_UPLOAD_NEEDED)
 {
 //Calculate time needed for updating the starter firmware
 INT nTime;
 is_GetDuration (hCam, IS_SE_STARTER_FW_UPLOAD, &nTime);
 /*
 e.g. have progress bar displayed in separate thread
 */

 //Upload new starter firmware during initialization
 hCam = hCam | IS_ALLOW_STARTER_FW_UPLOAD;
 nRet = is_InitCamera (&hCam, NULL);

 /*
 end progress bar
 */
 }
}

Sample programs

uc480MultipleCameraScan (C++)

uc480Console (C++)

uc480C# Demo (C#)

213

208

233

313

231

© 2013 Thorlabs GmbH276

DCx Cameras

4.3.61 is_InitEvent

USB 2.0

USB 3.0

-

Syntax

INT is_InitEvent (HIDS hCam, HANDLE hEv, INT which)

Description

is_InitEvent() initializes the event handle for the specified event object. This registers the event object in the
uc480 kernel driver.

Attention

Using USB cameras under Windows

The following events require a Windows message loop. This message loop has to be executed by the thread that
loads the uc480 API. The message loop is usually provided by the application window. In some cases, the
message loop might not be created automatically (e.g. in console applications). In this case you will need to
implement the message loop yourself.

This applies to the following uc480 events:

IS_SET_EVENT_REMOVE

IS_SET_EVENT_REMOVAL

IS_SET_EVENT_DEVICE_RECONNECTED

IS_SET_EVENT_NEW_DEVICE

If no message loop exists, a USB camera will not be automatically detected after reconnecting.

Input parameters

hCam Camera handle

hEv Event handle created by the CreateEvent() Windows
API function.

which ID of the event to be initialized (see is_EnableEvent()
)

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_EnableEvent()

is_DisableEvent()

is_ExitEvent()

209

209

205

214

© 2013 Thorlabs GmbH

4 Programming (SDK)

277

Example

HANDLE hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

//Enable frame event, start image capture and wait for event
is_InitEvent(hCam, hEvent, IS_SET_EVENT_FRAME);
is_EnableEvent(hCam, IS_SET_EVENT_FRAME);
is_FreezeVideo(hCam, IS_DONT_WAIT);
DWORD dwRet = WaitForSingleObject(hEvent, 1000);
if (dwRet == WAIT_TIMEOUT)
{
 /* wait timed out */
}
else if (dwRet == WAIT_OBJECT_0)
{
 /* event signalled */
}
is_DisableEvent(hCam, IS_SET_EVENT_FRAME);
is_ExitEvent(hCam, IS_SET_EVENT_FRAME);
CloseHandle(hEvent);

Sample programs

SimpleLive (C++)

uc480Event (C++)

© 2013 Thorlabs GmbH278

DCx Cameras

4.3.62 is_InitImageQueue

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_InitImageQueue (HIDS hCam, INT nMode)

Description

is_InitImageQueue() enables the queue mode for existing image memory sequences. New images will be
added to the end of the queue on arrival (FIFO principle). The image memory sequence has to be created with
is_AddToSequence() prior to calling is_InitImageQueue(). With is_WaitForNextImage() you can
query the pointer and sequence ID of the first (i.e. oldest) image in the sequence.

Note

Image memory sequences can also be used without queue mode. In this case the current image memory has to be
queried with is_GetActSeqBuf() on every frame event. Disadvantage of this proceeding is that at very high
frame rates it may happen that additional images arrive between the frame event and accessing/locking the
memory. The images arriving in this period will be skipped when you query the current image.

When the queue mode is used (is_InitImageQueue()), however, you can be sure to always receive the oldest
image which has not yet been queried. In addition, image memories are automatically locked immediately after
receiving the image. This prevents images from being overwritten when very high frame rates and few image
memories are used.

Input parameters

hCam Camera handle

nMode Queue mode. Currently only nMode = 0 is supported.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_ExitImageQueue()

is_WaitForNextImage()

is_AddToSequence()

Example

// A previously initialized camera continuously captures images
// until a timeout or transfer error occurs.
// Note: image memories have to be allocated before this

is_InitImageQueue (m_hCam, 0);
INT nMemID = 0;
char *pBuffer = NULL;

while (IS_SUCCESS == is_WaitForNextImage(m_hCam, 1000, &pBuffer, &nMemID))
{
 is_SaveImageMem (m_hCam, "image.bmp", pBuffer, nMemID);
 is_UnlockSeqBuf (m_hCam, nMemID, pBuffer);
}
is_ExitImageQueue (m_hCam);

156 356

226

215

356

156

© 2013 Thorlabs GmbH

4 Programming (SDK)

279

4.3.63 is_InquireImageMem

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_InquireImageMem (HIDS hCam, char* pcMem, int nID,
 int* pnX, int* pnY,
 int* pnBits, int* pnPitch);

Description

is_InquireImageMem() reads out the properties of an allocated image memory.

Input parameters

hCam Camera handle

pMem Pointer to the starting address of the image memory as allocated by
is_AllocImageMem()

NID ID of the image memory as allocated by is_AllocImageMem()

pnX Returns the width used to define the image memory. You can also pass NULL
instead.

pnY Returns the height used to define the image memory. You can also pass NULL
instead.

pnBits Returns the bit width used to define the image memory. You can also pass
NULL instead.

pnPitch Returns the line increment of the image memory. You can also pass NULL
instead.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_AllocImageMem()

is_SetImageMem()

is_SetAllocatedImageMem()

is_GetColorDepth()

157

157

157

337

301

237

© 2013 Thorlabs GmbH280

DCx Cameras

4.3.64 is_IO

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_IO(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

With the is_IO() function you control all flash and trigger functions and the additional digital outputs (GPIOs)
of some DCx Camera models. For information on GPIO wiring, please refer to the Electrical Specifications
chapter.

Additionally you can toggle the color of the LED on the back of the DCU22x and DCC1240x camera housing.

Note

GPIOs are available only for DCC3240x cameras. The GPIOs are not provided with optocouplers and use TTL/
LVCMOS voltages. For information on GPIO wiring, please refer to the Electrical specifications chapter.

Rolling shutter cameras:
Using is_IO(), you can determine the times required to implement a global flash function for rolling shutter
cameras. This way, a rolling shutter camera can also be used as a global shutter camera provided that no
ambient light falls on the sensor outside the flash period.
If the exposure time is set too short so that no global flash operation is possible, the function returns
IS_NO_SUCCESS.

Note

To use a rolling shutter camera with the global start function, first call the is_SetGlobalShutter() function.
Otherwise, incorrect values will be returned for Delay and Duration.

Global shutter cameras:
In freerun mode, the exposure of global shutter cameras is delayed if the exposure time is not set to the
maximum value. is_IO() determines the required delay in order to synchronize exposure and flash operation.
In triggered mode, the return values for delay and flash duration are 0, since no delay is necessary before
exposure starts.

For further information, please refer to the chapters Camera basics: Shutter methods , Digital input/output
(trigger/flash) and Operating modes .

Attention

Accuracy of flash synchronization

The following parameters have an influence on the camera's internal timing:

Image geometry (CMOS and CCD sensors)

Pixel clock (CMOS and CCD sensors)

Exposure time (CCD sensors)

If you change any of these parameters, you will have to set the flash duration and flash delay parameters once
again.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Note

The following functions are obsolete by the is_IO() function:

is_GetGlobalFlashDelays()

is_SetFlashDelay()

is_SetFlashStrobe()

is_SetIO()

is_SetIOMask()

19

487

487

30

47 17

144

294

216

© 2013 Thorlabs GmbH

4 Programming (SDK)

281

is_SetLED()

See also: Obsolete functions

Input parameters

hCam Camera handle

nCommand

GPIO

IS_IO_CMD_GPIOS_GET_SUPPORTED Returns the supported GPIO ports (Example 1)

IO_FLASH_GPIO_PORT_MASK
(IO_FLASH_MODE_GPIO_1 |
IO_FLASH_MODE_GPIO_2)

IS_IO_CMD_GPIOS_GET_SUPPORTED_INPUTS Returns the supported GPIO inputs (Example 1)

IS_IO_CMD_GPIOS_GET_SUPPORTED_OUTPUTS Returns the supported GPIO outputs (Example 1)

IS_IO_CMD_GPIOS_GET_DIRECTION Returns the input/output mask of the GPIOs (Example 2
)

IS_IO_CMD_GPIOS_SET_DIRECTION Set the GPIO on input/output (Example 2)

IO_FLASH_MODE_GPIO_1: Sets GPIO 1 as outout.

IO_FLASH_MODE_GPIO_2: Sets GPIO 2 as output.

IS_IO_CMD_GPIOS_GET_STATE Returns the state of the GPIO (High, Low) (Example 2
)

IS_IO_CMD_GPIOS_SET_STATE Sets the state of the GPIOs if they are defined as output
(High, Low) (Example 2)

IS_IO_CMD_GPIOS_GET_CONFIGURATION Returns the configuration of a GPIO port (Example 10
)

IS_IO_CMD_GPIOS_SET_CONFIGURATION Sets the configuration of a GPIO port (Example 11 ,
Example 12)

Flash

IS_IO_CMD_FLASH_GET_SUPPORTED_GPIOS Returns the GPIOs which can be used for flash output
(Example 6)

IS_IO_CMD_FLASH_GET_MODE Returns the current flash mode, see below (Example 7
)

IS_IO_CMD_FLASH_SET_MODE Sets the flash mode (Example 7)

IO_FLASH_MODE_OFF: Disables the digital output.

IO_FLASH_MODE_TRIGGER_LO_ACTIVE: Enables
the flash strobe in trigger mode. The digital output is set
to low level for the flash duration.

IO_FLASH_MODE_TRIGGER_HI_ACTIVE: Enables
the flash strobe in trigger mode. The digital output is set
to high level for the flash duration.

IO_FLASH_MODE_CONSTANT_HIGH: Statically sets
the digital output to high level (HIGH).

IO_FLASH_MODE_CONSTANT_LOW: Statically sets the
digital output to low level (LOW).

IO_FLASH_MODE_FREERUN_LO_ACTIVE: Enables
the flash strobe in freerun mode. The digital output is
set to low level for the flash duration.

IO_FLASH_MODE_FREERUN_HI_ACTIVE: Enables
the flash strobe in freerun mode. The digital output is
set to high level for the flash duration.

IS_IO_CMD_FLASH_GET_GLOBAL_PARAMS Returns the parameters for the global exposure window
(Example 4)

IS_IO_CMD_FLASH_APPLY_GLOBAL_PARAMS Returns the parameters for the global exposure window
and sets them as flash parameters (Examplel 4)

IS_IO_CMD_FLASH_GET_PARAMS Returns the current values for flash delay and duration

379

284

284

284

284

284

284

284

287

287

287

285

285

285

284

284

© 2013 Thorlabs GmbH282

DCx Cameras

hCam Camera handle

(Example 5)

IS_IO_CMD_FLASH_SET_PARAMS Sets the current values for flash delay and duration
(Example 5)

IS_IO_CMD_FLASH_GET_PARAMS_MIN Returns the minimum possible values for flash delay and
duration (Example 5)

IS_IO_CMD_FLASH_GET_PARAMS_MAX Returns the maximum possible values for flash delay and
duration (Example 5)

IS_IO_CMD_FLASH_GET_PARAMS_INC Returns the increments for flash delay and duration
(Example 5)

IS_IO_CMD_FLASH_GET_GPIO_PARAMS_MIN Returns the minimum possible parameters for the GPIOs
as shorter flash delay and flash duration are possible
when using the GPIOs for flash (Example 13).

IS_IO_CMD_FLASH_SET_GPIO_PARAMS Sets the flash delay and flash duration and allows the
minimum values for GPIOs.

Attention: For values below 20 µ s an unpredictable
behavior can occur when flashing is done via the normal
flash pin (Example 13).

Pulse-width modulation

IS_IO_CMD_PWM_GET_SUPPORTED_GPIOS Returns the GPIOs which can be used for pulse-width
modulation (PWM) (Example 6)

IS_IO_CMD_PWM_GET_MODE Returns the current PWM mode (Example 9)

IS_IO_CMD_PWM_SET_MODE Sets the current PWM mode (Example 9)

IS_FLASH_MODE_PWM: Sets the flash output as output
for PWM mode.

IO_GPIO_1: Sets GPIO 1 as output.

IO_GPIO_2: Sets GPIO 2 as output.

IS_IO_CMD_PWM_GET_PARAMS Returns the current values of the PWM parameters
(Example 8)

IS_IO_CMD_PWM_SET_PARAMS Sets the current values of the PWM parameters
(Example 8)

IS_IO_CMD_PWM_GET_PARAMS_MIN Returns the minimum possible values for PWM
parameters (Example 8)

IS_IO_CMD_PWM_GET_PARAMS_MAX Returns the maximum possible values for PWM
parameters (Example 8)

IS_IO_CMD_PWM_GET_PARAMS_INC Returns the increments of the PWM parameters
(Example 8)

LED

IS_IO_CMD_LED_GET_STATE Returns the state of the LED (Example 3)

IS_IO_CMD_LED_SET_STATE Sets the state of the LED (Example 3)

IO_LED_STATE_1: Sets LED to orange.

IO_LED_STATE_2: Sets LED to green.

IS_IO_CMD_LED_TOGGLE_STATE Toggles between the LED states (Example 3)

pParam Pointer to a function parameter, whose function depends
on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

285

285

285

285

285

287

287

285

286

286

286

286

286

286

286

284

284

284

© 2013 Thorlabs GmbH

4 Programming (SDK)

283

Contents of the IO_FLASH_PARAMS structure

INT s32Delay Flash delay (in µ s)

UINT u32Duration Flash duration (in µ s)

If 0 is passed, the flash output will be active until the end of
the exposure time. For sensors with Global Start Shutter this
is the time until the end of exposure of the first sensor row.

Contents of the IO_PWM_PARAMS structure

double dblFrequency_Hz Frequency of the pulse-width modulation (PWM)

1.0…10 000 Hz

double dbl_DutyCycle Duty cycle of the pulse-width modulation

0.0…1.0 (1.0 corresponds to 100 %)

Contents of the IO_GPIO_CONFIGURATION structure

UINT u32Gpio Sets the GPIO whose configuration is to be read or set
(IO_GPIO_1, IO_GPIO_2). So this value must be initialized
before the GPIO configuration is read or set.

UINT u32Caps When reading the configuration: ORed bitmask of the
supported GPIO modes (IS_GPIO_INPUT |
IS_GPIO_OUTPUT…).

UINT u32Configuration When reading the configuration: returns the current set
configuration

When setting the configuration: sets the configuration

UINT u32State When reading the configuration: returns the current state of
the GPIO (0 = Low, 1 = High).

When setting the configuration: sets the state of the GPIO
(0 = Low, 1 = High).

UINT u32Reserved[12] Reserved

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver has
been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range
or is not supported for this sensor or is not available in this
mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

IS_TRIGGER_ACTIVATED The function cannot be used because the camera is
waiting for a trigger signal.

IS_TRIGGER_NOT_ACTIVATED The function is not possible as trigger is disabled.

© 2013 Thorlabs GmbH284

DCx Cameras

Example 1

INT nRet = IS_SUCCESS;

UINT nSupportedIOs = 0;
nRet = is_IO(m_hCam, IS_IO_CMD_GPIOS_GET_SUPPORTED,
 (void*)&nSupportedIOs, sizeof(nSupportedIOs));

UINT nSupportedInputs = 0;
nRet = is_IO(m_hCam, IS_IO_CMD_GPIOS_GET_SUPPORTED_INPUTS,
 (void*)&nSupportedInputs, sizeof(nSupportedInputs));

UINT nSupportedOutputs = 0;
nRet = is_IO(m_hCam, IS_IO_CMD_GPIOS_GET_SUPPORTED_OUTPUTS,
 (void*)&nSupportedOutputs, sizeof(nSupportedOutputs));

Example 2

INT nRet = IS_SUCCESS;

UINT nDirection = 0;

// Get direction
nRet = is_IO(m_hCam, IS_IO_CMD_GPIOS_GET_DIRECTION,
 (void*)&nDirection, sizeof(nDirection));

// Set GPIO1 and GPIO2 to output
nDirection = IO_GPIO_1 | IO_GPIO_2;
nRet = is_IO(m_hCam, IS_IO_CMD_GPIOS_SET_DIRECTION,
 (void*)&nDirection, sizeof(nDirection));

// Get the current state of the GPIOs
UINT nCurrentState = 0;
nRet = is_IO(m_hCam, IS_IO_CMD_GPIOS_GET_STATE,
 (void*)&nCurrentState, sizeof(nCurrentState));

// Set GPIO1 to high, GPIO2 to low
nCurrentState = IO_GPIO_1;
nRet = is_IO(m_hCam, IS_IO_CMD_GPIOS_SET_STATE,
 (void*)&nCurrentState, sizeof(nCurrentState));

Example 3

INT nRet = IS_SUCCESS;

UINT nLED = 0;

// Get the current state of the LED
nCurrentState = 0;
nRet = is_IO(m_hCam, IS_IO_CMD_LED_GET_STATE,
 (void*)&nCurrentState, sizeof(nCurrentState));

// Set LED to state 1 (red)
nCurrentState = IO_LED_STATE_1;
nRet = is_IO(m_hCam, IS_IO_CMD_LED_SET_STATE,
 (void*)&nCurrentState, sizeof(nCurrentState));

// Toggle LED state to green
nRet = is_IO(m_hCam, IS_IO_CMD_LED_TOGGLE_STATE, NULL, 0);

Example 4

INT nRet = IS_SUCCESS;

// Read the global flash params
IO_FLASH_PARAMS flashParams;
INT nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_GLOBAL_PARAMS,
 (void*)&flashParams, sizeof(flashParams));
if (nRet == IS_SUCCESS)
{
 INT nDelay = flashParams.s32Delay;
 UINT nDuration = flashParams.u32Duration;
}

// Read the global flash params and set the flash params to these values
INT nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_APPLY_GLOBAL_PARAMS, NULL, 0);

© 2013 Thorlabs GmbH

4 Programming (SDK)

285

Example 5

INT nRet = IS_SUCCESS;

IO_FLASH_PARAMS flashParams;

// Get the minimum values for flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_PARAMS_MIN,
 (void*)&flashParams, sizeof(flashParams));
if (nRet == IS_SUCCESS)
{
 INT nFlashDelayMin = flashParams.s32Delay;
 UINT nFlashDurationMin = flashParams.u32Duration;
}

// Get the maximum values for flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_PARAMS_MAX,
 (void*)&flashParams, sizeof(flashParams));
if (nRet == IS_SUCCESS)
{
 INT nFlashDelayMax = flashParams.s32Delay;
 UINT nFlashDurationMax = flashParams.u32Duration;
}

// Get the increment for flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_PARAMS_INC,
 (void*)&flashParams, sizeof(flashParams));
if (nRet == IS_SUCCESS)
{
 UINT nFlashDelayInc = flashParams.s32Delay;
 UINT nFlashDurationInc = flashParams.u32Duration;
}

// Get the current values for flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_PARAMS,
 (void*)&flashParams, sizeof(flashParams));
if (nRet == IS_SUCCESS)
{
 INT nCurrentFlashDelay = flashParams.s32Delay;
 UINT nCurrentFlashDuration = flashParams.u32Duration;
}

// Set the current values for flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_SET_PARAMS,
 (void*)&flashParams, sizeof(flashParams));

Example 6

INT nRet = IS_SUCCESS;

// Get all GPIOs that can be used as flash output
UINT nGPIOs_Flash = 0;
INT nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_SUPPORTED_GPIOS,
 (void*)&nGPIOs_Flash, sizeof(nGPIOs_Flash));

// Get all GPIOs that can be used for the PWM
UINT nGPIOs_PWM = 0;
INT nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_SUPPORTED_GPIOS,
 (void*)&nGPIOs_PWM, sizeof(nGPIOs_PWM));

Example 7

INT nRet = IS_SUCCESS;

// Disable flash
UINT nMode = IO_FLASH_MODE_OFF;
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_SET_MODE, (void*)&nMode, sizeof(nMode));

// Set the flash to a constant low output
nMode = IO_FLASH_MODE_CONSTANT_LOW;
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_SET_MODE, (void*)&nMode, sizeof(nMode));

// Set the flash to a high active pulse for each image in the trigger mode
nMode = IO_FLASH_MODE_TRIGGER_HI_ACTIVE;
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_SET_MODE, (void*)&nMode, sizeof(nMode));

// Get the current flash mode
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_MODE, (void*)&nMode, sizeof(nMode));

© 2013 Thorlabs GmbH286

DCx Cameras

Example 8

INT nRet = IS_SUCCESS;

IO_PWM_PARAMS m_pwmParams;

// Get the minimum values of the PWM parameters
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_PARAMS_MIN,
 (void*)&m_pwmParams, sizeof(m_pwmParams));
if (nRet == IS_SUCCESS)
{
 double dblFrequencyMin = m_pwmParams.dblFrequency_Hz;
 double dblDutyCycleMin = m_pwmParams.dblDutyCycle;
}

// Get the maximum values of the PWM parameters
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_PARAMS_MAX,
 (void*)&m_pwmParams, sizeof(m_pwmParams));
if (nRet == IS_SUCCESS)
{
 double dblFrequencyMax = m_pwmParams.dblFrequency_Hz;
 double dblDutyCycleMax = m_pwmParams.dblDutyCycle;
}

// Get the increment of the PWM parameters
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_PARAMS_INC,
 (void*)&m_pwmParams, sizeof(m_pwmParams));
if (nRet == IS_SUCCESS)
{
 double dblFrequencyInc = m_pwmParams.dblFrequency_Hz;
 double dblDutyCycleInc = m_pwmParams.dblDutyCycle;
}

// Get the current values of the PWM parameters
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_PARAMS,
 (void*)&m_pwmParams, sizeof(m_pwmParams));
if (nRet == IS_SUCCESS)
{
 double dblFrequency = m_pwmParams.dblFrequency_Hz;
 double dblDutyCycle = m_pwmParams.dblDutyCycle;
}

// Set the current values of the PWM parameters (1 KHz, 50% duty cycle)
m_pwmParams.dblFrequency_Hz = 1000;
m_pwmParams.dblDutyCycle = 0.5;
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_SET_PARAMS,
 (void*)&m_pwmParams, sizeof(m_pwmParams));

Example 9

INT nRet = IS_SUCCESS;

// Set GPIO1 as PWM output
UINT nMode = IO_GPIO_1;
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_SET_MODE,
 (void*)&nMode, sizeof(nMode));

// Set GPIO1, GPIO2 and the flash pin as PWM output
nMode = IO_GPIO_1 | IO_GPIO_2 | IS_FLASH_MODE_PWM;
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_SET_MODE, (void*)&nMode, sizeof(nMode));

// Get the current PWM mode
nRet = is_IO(m_hCam, IS_IO_CMD_PWM_GET_MODE, (void*)&nMode, sizeof(nMode));

© 2013 Thorlabs GmbH

4 Programming (SDK)

287

Example 10

INT nRet = IS_SUCCESS;

IO_GPIO_CONFIGURATION gpioConfiguration;

// Read information about GPIO1
gpioConfiguration.u32Gpio = IO_GPIO_1;

nRet = is_IO(hCam, IS_IO_CMD_GPIOS_GET_CONFIGURATION, (void*)&gpioConfiguration,
 sizeof(gpioConfiguration));

if (nRet == IS_SUCCESS)
{
 if ((gpioConfiguration.u32Caps & IS_GPIO_PWM) != 0)
 {
 // GPIO1 supports PWM
 }
 if ((gpioConfiguration.u32Caps & IS_GPIO_FLASH) != 0)
 {
 // GPIO1 supports Flash
 }
 if (gpioConfiguration.u32Configuration == IS_GPIO_OUTPUT)
 {
 // GPIO1 is currently configured as output
 if (gpioConfiguration.u32State == 1)
 {
 // GPIO1 is currently output HIGH
 }
 }
}

Example 11

INT nRet = IS_SUCCESS;

IO_GPIO_CONFIGURATION gpioConfiguration;

// Set configuration of GPIO1 (OUTPUT LOW)
gpioConfiguration.u32Gpio = IO_GPIO_1;
gpioConfiguration.u32Configuration = IS_GPIO_OUTPUT;
gpioConfiguration.u32State = 0;

nRet = is_IO(hCam, IS_IO_CMD_GPIOS_SET_CONFIGURATION, (void*)&gpioConfiguration,
 sizeof(gpioConfiguration));

Example 12

INT nRet = IS_SUCCESS;

IO_GPIO_CONFIGURATION gpioConfiguration;

// Set configuration of GPIO1 (COM-port TX)
// GPIO1 configured as RX is not supported!
gpioConfiguration.u32Gpio = IO_GPIO_1;
gpioConfiguration.u32Configuration = IS_GPIO_COMPORT_TX;

// GPIO2 will be configured as IS_GPIO_COMPORT_RX automatically!
nRet = is_IO(hCam, IS_IO_CMD_GPIOS_SET_CONFIGURATION, (void*)&gpioConfiguration,
 sizeof(gpioConfiguration));

// The following code leads to the same setting
// Set configuration of GPIO2 (COM-port RX)
gpioConfiguration.u32Gpio = IO_GPIO_2;
gpioConfiguration.u32Configuration = IS_GPIO_COMPORT_RX;

// GPIO1 will be configured as IS_GPIO_COMPORT_TX automatically!
nRet = is_IO(hCam, IS_IO_CMD_GPIOS_SET_CONFIGURATION, (void*)&gpioConfiguration,
 sizeof(gpioConfiguration));

Example 13

INT nRet = IS_SUCCESS;

IO_FLASH_PARAMS flashParams;
// Get the minimum values for the GPIO flash delay and flash duration
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_GET_GPIO_PARAMS_MIN, (void*)&flashParams,
 sizeof(flashParams));

// Set the minimum values for flash delay and flash duration. Be careful: The normal flash does not work with values < 20 us
nRet = is_IO(m_hCam, IS_IO_CMD_FLASH_SET_GPIO_PARAMS, (void*)&flashParams,
 sizeof(flashParams));

© 2013 Thorlabs GmbH288

DCx Cameras

4.3.65 is_IsVideoFinish

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_IsVideoFinish (HIDS hCam, INT* pbo)

Description

Using is_IsVideoFinish(), you can check whether an image has been captured and stored completely in the
image memory. This function is helpful if the is_FreezeVideo() function was called with the IS_DONT_WAIT
parameter.

By setting the *pbo==IS_CAPTURE_STATUS parameter before calling is_IsVideoFinish(), you can also
check whether a transfer or post-processing error occurred.

Input parameters

hCam Camera handle

pbo By setting *pbo != IS_CAPTURE_STATUS before calling the function, pbo
contains the following digitizing status:

IS_VIDEO_NOT_FINISH = Digitizing of the image is not completed yet.

IS_VIDEO_FINISH = Digitizing of the image is completed.

By setting *pbo == IS_CAPTURE_STATUS before calling the function, pbo
contains the following digitizing status:

IS_VIDEO_NOT_FINISH = Digitizing of the image is not completed yet.

IS_VIDEO_FINISH = Digitizing of the image is completed.

IS_CAPTURE_STATUS = Transfer error or conversion problem (e.g.
destination memory is invalid)

The parameter IS_CAPTURE_STATUS replaces the previous parameter
IS_TRANSFER_FAILED.

The parameter IS_TRANSFER_FAILED was moved into the new header file
uc480_deprecated.h, which contains all obsolete function definitions and
constants. If necessary the header file uc480_deprecated.h can be included
in addition to the header file uc480.h.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_FreezeVideo()

is_HasVideoStarted()

223

223

259

© 2013 Thorlabs GmbH

4 Programming (SDK)

289

4.3.66 is_LockSeqBuf

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_LockSeqBuf (HIDS hCam, INT nNum, char* pcMem)

Description

is_LockSeqBuf() locks write access to an image memory within a sequence. In the capturing process, locked
image memories will be skipped in the sequence list of image memories to be used. This way, you can avoid that
image data which are required for further processing will be overwritten by newly captured data. Full access to the
image memory is still guaranteed. You can lock any number of image memories at the same time.

Using the is_UnlockSeqBuf() function, you can re-enable write access to the image memory.

Input parameters

hCam Camera handle

nNum Number of the image memory to be locked (1…max) or
IS_IGNORE_PARAMETER: The image memory will be identified by its starting
address only.

pcMem Starting address of the image memory to be locked

Attention

nNum indicates the location in the sequence list, not the memory ID assigned using is_AllocImageMem() .

Return values

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_UnlockSeqBuf()

is_AddToSequence()

is_SetImageMem()

is_SetAllocatedImageMem()

354

157

354

156

337

301

© 2013 Thorlabs GmbH290

DCx Cameras

4.3.67 is_Measure

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_Measure(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

The function allows the measurement of the sharpness in a defined AOI of the current image. To get a sharpness
value the edges in the image are evaluated. The sharpness can only be indicated as a relative value as it depends
on the edges in the current image. An image with less edges will reach the sharpness value of an image with a lot
of edges.

The higher the value, the better the sharpness. The value can be used in comparative measurements to detect
changes in the image acquisition of the same object, e.g. caused by readjusted lenses.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Input parameters

hCam Camera handle

nCommand

IS_MEASURE_CMD_SHARPNESS_AOI_SET Sets an AOI in which the sharpness is measured. In the
image are up to 5 AOIs possible. These AOIs can also
overlap. (Example 1)

IS_MEASURE_CMD_SHARPNESS_AOI_INQUIRE Returns information of the AOI, e.g. the sharpness
(Example 2)

IS_MEASURE_CMD_SHARPNESS_AOI_SET_PRESET Sets different predefined AOIs in the image (Example 3
)

pParam Pointer to a function parameter, whose function depends on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam refers.

Content of the MEASURE_SHARPNESS_AOI_INFO structure

UINT u32NumberAOI ID of the AOI

UINT u32SharpnessValue Relative sharpness value in the defined AOI

IS_RECT rcAOI Position and size of the AOI:

s32X: X position

s32Y: Y position

s32Width: AOI width

s32Height: AOI height

Content of the MEASURE_SHARPNESS_AOI_PRESETS enumeration

IS_MEASURE_SHARPNESS_AOI_PRESET_1 Predefined AOI for the harpness measurement (in each
of the four image corner and in the center)

Return values

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_ACTIVE_IMG_MEM No active image memory available. You must set the
memory to active using the is_SetImageMem()
function or create a sequence using the

291

291

291

© 2013 Thorlabs GmbH

4 Programming (SDK)

291

is_AddToSequence() function.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

Example 1

INT nRet = IS_SUCCESS;

/* Create info object */
MEASURE_SHARPNESS_AOI_INFO measureSharpnessInfo;

/* Set values of AOI_0: The position and size of the AOI equals the whole image */
measureSharpnessInfo.u32NumberAOI = 0;
measureSharpnessInfo.rcAOI.s32X = 0;
measureSharpnessInfo.rcAOI.s32Y = 0;
measureSharpnessInfo.rcAOI.s32Width = m_s32MaxImageWidth;
measureSharpnessInfo.rcAOI.s32Height = m_s32MaxImageHeight;

/* Set AOI_0 */
nRet = is_Measure(m_hCam, IS_MEASURE_CMD_SHARPNESS_AOI_SET, (void*)&measureSharpnessInfo,
 sizeof(measureSharpnessInfo));

/* Set values of AOI_1 */
measureSharpnessInfo.u32NumberAOI = 1;
measureSharpnessInfo.rcAOI.s32X = 50;
measureSharpnessInfo.rcAOI.s32Y = 50;
measureSharpnessInfo.rcAOI.s32Width = 200;
measureSharpnessInfo.rcAOI.s32Height = 200;

/* Set AOI_1 */
nRet = is_Measure(m_hCam, IS_MEASURE_CMD_SHARPNESS_AOI_SET, (void*)&measureSharpnessInfo,
 sizeof(measureSharpnessInfo));

Example 2

INT nRet = IS_SUCCESS;

/* Create info object */
MEASURE_SHARPNESS_AOI_INFO measureSharpnessInfo;

/* Get values of AOI_0 */
measureSharpnessInfo.u32NumberAOI = 0;

nRet = is_Measure(m_hCam, IS_MEASURE_CMD_SHARPNESS_AOI_INQUIRE, (void*)&measureSharpnessInfo,
 sizeof(measureSharpnessInfo));
if (nRet == IS_SUCCESS)
{
 UINT s32Sharpness = measureSharpnessInfo.u32SharpnessValue;
}

Example 3

INT nRet = IS_SUCCESS;

/* Set preset */
UINT nPreset = IS_MEASURE_SHARPNESS_AOI_PRESET_1;

nRet = is_Measure(m_hCam, IS_MEASURE_CMD_SHARPNESS_AOI_SET_PRESET, (void*)&nPreset,
 sizeof(nPreset));

© 2013 Thorlabs GmbH292

DCx Cameras

4.3.68 is_ParameterSet

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_ParameterSet(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

The is_ParameterSet() function saves the current camera parameters to a file or to the EEPROM of the
camera and loads the parameter set from a file or the EEPROM.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Only camera-specific ini files can be loaded. The uc480 parameter file section in the appendix describes the
structure of a uc480 ini file.

Attention

When loading an ini file, make sure that the image size (AOI) and color depth parameters in the ini file match those
in the allocated memory. Otherwise, display errors may occur.

Note

The following functions are obsolete by the is_ParameterSet() function:

is_SaveParameters()

is_LoadParameters()

See also: Obsolete functions

Input parameter

hCam Camera handle

nCommand

IS_PARAMETERSET_CMD_LOAD_EEPROM Loads a camera parameter set from the EEPROM
(Example 1)

The parameter sets in the EEPROM of the camera can be
loaded via special file names:

\\cam\\set1 oder /cam/set1

IS_PARAMETERSET_CMD_LOAD_FILE Loads a camera parameter set from a file (Example 2)

You must pass the path to the ini file as Unicode string.
You can pass either a relative or an absolute path. If you
pass NULL the "Open file" dialog opens.

IS_PARAMETERSET_CMD_SAVE_EEPROM Saves a camera parameter set in the EEPROM (Example
3)

The parameter sets in the EEPROM of the camera can be
saved with special file names:

\\cam\\set1 oder /cam/set1

IS_PARAMETERSET_CMD_SAVE_FILE Saves a camera parameter set in a file (Example 4)

You must pass the path to the ini file as Unicode string.
You can pass either a relative or an absolute path. If you
pass NULL the "Save as" dialog opens.

IS_PARAMETERSET_CMD_GET_NUMBER_SUPPORTE

D
Returns the number of supported parameter sets in the
camera EEPROM (Example 5). At the moment this is
"1" for all cameras.

pParam Pointer to a function parameter, whose function depends
on nCommand.

504

379

293

293

293

293

293

© 2013 Thorlabs GmbH

4 Programming (SDK)

293

cbSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

Return values

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_CameraStatus()

Example 1

INT nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_LOAD_EEPROM, NULL, NULL);

Example 2

// Load parameters from file (open filebox)
INT nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_LOAD_FILE, NULL, NULL);

// Load parameters from specified file
nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_LOAD_FILE, L"file.ini", NULL);

Example 3

INT nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_SAVE_EEPROM, NULL, NULL);

Example 4

// Save parameters to file (open filebox)
INT nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_SAVE_FILE, NULL, NULL);

// Save parameters to specified file
nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_SAVE_FILE, L"file.ini", NULL);

Example 5

// Get the number of supported parameter sets in the camera EEPROM
UINT nNumber;
INT nRet = is_ParameterSet(m_hCam, IS_PARAMETERSET_CMD_GET_NUMBER_SUPPORTED, (void*)
 &nNumber, sizeof(nNumber));

172

© 2013 Thorlabs GmbH294

DCx Cameras

4.3.69 is_PixelClock

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_PixelClock(HIDS hCam, UINT nCommand, void* pParam, UINT cbSizeOfParam)

Description

The function returns the adjustable pixel clock range sets the piel clock. Due to an excessive pixel clock for USB
cameras, images may get lost during the transfer. If you change the pixel clock on-the-fly, the current image
capturing process will be aborted.

The pixel clock limit values can vary, depending on the camera model and operating mode. For detailed
information on the pixel clock range of a specific camera model, please refer to the Camera and sensor data
chapter.

The nCommand input parameter is used to select the function mode. The pParam input parameter depends on the
selected function mode. If you select functions for setting or returning a value, pParam contains a pointer to a
variable of the UINT type. The size of the memory area to which pParam refers is specified in the
cbSizeOfParam input parameter.

Note

Note: The following functions are obsolete by the is_PixelClock() function:

is_SetPixelClock()

is_GetPixelClockRange()

See also: Obsolete functions

Input parameter

hCam Camera handle

nCommand

IS_PIXELCLOCK_CMD_GET_NUMBER Returns the number of discrete pixel clock which are
supported by the camera (Example 1).

IS_PIXELCLOCK_CMD_GET_LIST Returns the list with discrete pixel clocks.

IS_PIXELCLOCK_CMD_GET_RANGE Returns the range for the pixel clock (Example 2)

IS_PIXELCLOCK_CMD_GET_DEFAULT Returns the default pixel clock (Example 4)

IS_PIXELCLOCK_CMD_GET Returns the current set pixel clock in MHz (Example 3
)

IS_PIXELCLOCK_CMD_SET Sets the pixel clock in MHz (Example 4)

pParam Pointer to a function parameter, whose function depends
on nCommand.

cbSizeOfParam Size (in bytes) of the memory area to which pParam
refers.

Return values

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

460

379

295

295

295

295

295

© 2013 Thorlabs GmbH

4 Programming (SDK)

295

Related functions

is_GetFramesPerSecond()

is_GetFrameTimeRange()

is_Exposure()

is_SetOptimalCameraTiming()

is_SetFrameRate()

is_SetAutoParameter()

is_SetBinning()

is_SetSubSampling()

is_AOI()

Example 1

UINT nNumberOfSupportedPixelClocks = 0;
INT nRet = is_PixelClock(hCam, IS_PIXELCLOCK_CMD_GET_NUMBER,
 (void*)&nNumberOfSupportedPixelClocks,
 sizeof(nNumberOfSupportedPixelClocks));
if ((nRet == IS_SUCCESS) && (m_nNumberOfSupportedPixelClocks > 0))
{
 // No camera has more than 150 different pixel clocks.
 // Of course, the list can be allocated dynamically
 UINT nPixelClockList[150];
 ZeroMemory(&nPixelClockList, sizeof(nPixelClockList));

 nRet = is_PixelClock(hCam, IS_PIXELCLOCK_CMD_GET_LIST,
 (void*)nPixelClockList,
 nNumberOfSupportedPixelClocks * sizeof(UINT));
}

Example 2

UINT nRange[3];
ZeroMemory(nRange, sizeof(nRange));

// Get pixel clock range
INT nRet = is_PixelClock(hCam, IS_PIXELCLOCK_CMD_GET_RANGE, (void*)nRange, sizeof(nRange));
if (nRet == IS_SUCCESS)
{
 UINT nMin = nRange[0];
 UINT nMax = nRange[1];
 UINT nInc = nRange[2];
}

Example 3

UINT nPixelClock;

// Get current pixel clock
nRet = is_PixelClock(hCam, IS_PIXELCLOCK_CMD_GET, (void*)&nPixelClock, sizeof(nPixelClock));

Example 4

UINT nPixelClockDefault;

// Get default pixel clock
INT nRet = is_PixelClock(hCam, IS_PIXELCLOCK_CMD_GET_DEFAULT,
 (void*)&nPixelClockDefault, sizeof(nPixelClockDefault));
if (nRet == IS_SUCCESS)
{
 // Set this pixel clock
 nRet = is_PixelClock(hCam, IS_PIXELCLOCK_CMD_SET,
 (void*)&nPixelClockDefault, sizeof(nPixelClockDefault));
}

240

241

216

338

329

303

310

347

159

© 2013 Thorlabs GmbH296

DCx Cameras

4.3.70 is_ReadEEPROM

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_ReadEEPROM (HIDS hCam, INT Adr, char* pcString, INT Count)

Description

Using is_ReadEEPROM(), you can read the contents of the camera EEPROM. Besides the hard-coded factory
information, the EEPROM of the DCx Camera can hold 64 bytes of user data.

Input parameters

hCam Camera handle

Adr Starting address for data reads Value range: 0...63

pcString Pointer to the buffer for the data to read (min. size =
Count)

Count Number of characters to read

Return values

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_CRC_ERROR A CRC error-correction problem occurred while reading
the settings.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

Related functions

is_WriteEEPROM()

Example

char buffer[64];
is_ReadEEPROM(hCam, 0x00, buffer, 64);

358

© 2013 Thorlabs GmbH

4 Programming (SDK)

297

4.3.71 is_RenderBitmap

USB 2.0

USB 3.0

-

Syntax

INT is_RenderBitmap (HIDS hCam, INT nMemID, HWND hwnd, INT nMode)

Description

Using is_RenderBitmap(), you can output an image from an image memory in the specified window. For the
display, Windows bitmap functionality is used. The image is displayed in the format you specified when allocating
the image memory.

The bitspixel parameter of the is_AllocImageMem() function defines the color depth and display type.
RGB16 and RGB15 require the same amount of memory but can be distinguished by the bitspixel parameter.

Attention

is_RenderBitmap() can render Y8 and RGB formats. For displaying YUV/YCbCr formats please use the
is_DirectRenderer() function (see also Color and memory formats).

Input parameters

hCam Camera handle

nMemID ID of the image memory whose contents is to be
displayed

hwnd Output window handle

nMode

IS_RENDER_NORMAL The image is rendered normally. It will be displayed in
1:1 scale as stored in the image memory.

IS_RENDER_FIT_TO_WINDOW The image size is adjusted to fit the output window.

IS_RENDER_DOWNSCALE_1_2 Displays the image at 50 % of its original size.

IS_RENDER_PLANAR_COLOR_RED Renders the red color component of the planar format in
red.

IS_RENDER_PLANAR_COLOR_GREEN Renders the green color component of the planar
format in green.

IS_RENDER_PLANAR_COLOR_BLUE Renders the blue color component of the planar format
in blue.

IS_RENDER_PLANAR_MONO_RED Renders the red color component of the planar format in
gray shades.

IS_RENDER_PLANAR_MONO_GREEN Renders the green color component of the planar
format in gray shades.

IS_RENDER_PLANAR_MONO_BLUE Renders the blue color component of the planar format
in gray shades.

The following options can be linked by a logical OR using the nMode parameter:

IS_RENDER_MIRROR_UPDOWN Mirrors the displayed image along the horizontal axis.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid

157

198 502

© 2013 Thorlabs GmbH298

DCx Cameras

range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_AllocImageMem()

is_SetColorMode()

is_SetDisplayMode()

is_DirectRenderer()

Example

Fit image to window and display it upside down:

is_RenderBitmap (hCam, nMemID, hwnd, IS_RENDER_FIT_TO_WINDOW | IS_RENDER_MIRROR_UPDOWN);

Sample programs

SimpleAcquire (C++)

SimpleLive (C++)

157

319

322

198

© 2013 Thorlabs GmbH

4 Programming (SDK)

299

4.3.72 is_ResetToDefault

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_ResetToDefault (HIDS hCam)

Description

is_ResetToDefault() resets all parameters to the camera-specific defaults as specified by the driver. By
default, the camera uses full resolution, a medium speed and color level gain values adapted to daylight exposure.

Input parameters

hCam Camera handle

Return values

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence
and cannot be added again.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_DR_CANNOT_CREATE_SURFACE The image surface or overlay surface could not be
created.

IS_DR_CANNOT_CREATE_TEXTURE The texture could not be created.

IS_DR_CANNOT_CREATE_VERTEX_BUFFER The vertex buffer could not be created.

IS_DR_DEVICE_OUT_OF_MEMORY Not enough graphics memory available.

IS_DR_LIBRARY_NOT_FOUND The DirectRenderer library could not be found.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAPTURE_MODE The function can not be executed in the current camera
operating mode (free run, trigger or standby).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

© 2013 Thorlabs GmbH300

DCx Cameras

Related functions

is_ParameterSet() 292

© 2013 Thorlabs GmbH

4 Programming (SDK)

301

4.3.73 is_SetAllocatedImageMem

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetAllocatedImageMem (HIDS hCam, INT width, INT height, INT bitspixel,
 char* pcImgMem, int* pid)

Description

Using is_SetAllocatedImageMem(), you can make a memory allocated by a user the active memory for
storing digitized images in it. The allocated memory must be large enough and must always be locked globally.

Depending on the selected image format you need more than one byte per pixel for image memory:

unsigned int uBytesPerPixel = bitspixel/8;
if (uImageSize % bitspixel != 0)
{
 uBytesPerPixel++;
}
unsigned int uImageSize = width * height * uBytesPerPixel;

You can call the is_AddToSequence() function to add a memory which was set using
is_SetAllocatedImageMem() to a sequence.

The address of this memory will be passed to the uc480 driver. For this, you can use the
is_SetAllocatedImageMem() function. In addition, you need to specify the image size, just as you do when
calling is_AllocImageMem() . The returned memory ID is required by other functions for memory access.

The memory area must be removed from the driver management again using the is_FreeImageMem()
function. Please note that this does not release the memory. You then need to make sure that the memory will be
released again.

After is_SetAllocatedImageMem you must call is_SetImageMem or is_AddToSequence in order that the image caption
can be carried out in the image memory.

Input parameters

hCam Camera handle

width Image width

height Image height

bitspixel Image color depth (bits per pixel)

pcImgMem Pointer to the starting address of the allocated memory

pid Returns the ID of this memory.

Return values

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence and cannot
be added again.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the buffer is invalid.

IS_SUCCESS Function executed successfully

156

157

222

© 2013 Thorlabs GmbH302

DCx Cameras

Related functions

is_AllocImageMem()

is_FreeImageMem()

is_AddToSequence()

is_SetImageMem()

is_GetColorDepth()

is_GetImgMemPitch()

Example Windows

HANDLE hMem = GlobalAlloc(0, uImageSize);
char* pcMem = (char*)GlobalLock(hMem);
INT nRet = is_SetAllocatedImageMem(hCam, uWidth, uHeight, uBitspixel, pcMem, &iMemID);
[…]
nRet = is_FreeImageMem(hCam, pcMem, iMemID);
GlobalUnlock(hMem);
GlobalFree(hMem);

Example Linux

char* pcMem = (char*)malloc(uImageSize);
int iRet = mlock(pcMem, uImageSize);
INT nRet = is_SetAllocatedImageMem(hCam, uWidth, uHeight, uBitspixel, pcMem, &iMemID);
[…]
nRet = is_FreeImageMem(hCam, pcMem, iMemID);
iRet = munlock(pcMem, uImageSize);
free(pcMem);

157

222

156

337

237

248

© 2013 Thorlabs GmbH

4 Programming (SDK)

303

4.3.74 is_SetAutoParameter

USB 2.0

USB 3.0

GigE

USB 2.0

USB 3.0

GigE

Syntax

INT is_SetAutoParameter (HIDS hCam, INT param, double* pval1, double* pval2)

Description

Using is_SetAutoParameter(), you can control the automatic gain, exposure shutter, frame rate and white
balance control values.

For further information on automatic control, please refer to the Automatic image control chapter.

Control is only active as long as the camera is capturing images.

A manual change of the exposure time and gain settings disables the auto functions.

When the auto exposure shutter function is enabled, you cannot modify the pixel clock frequency.

The auto frame rate function is only available when the auto shutter control is on. Auto frame rate and auto gain
control cannot be used simultaneously.

The auto gain function can only be used for cameras with master gain control. Auto white balance is only
available for cameras with hardware RGB gain control.

The sensor's internal auto features are not supported by the sensors of DCx camera models.

Attention

Automatic controls when using very high frame rates

Using very high frame rates can cause that too many control commands are sent to the camera. When using frame
rates higher than 100 fps you should increase the value for IS_SET_AUTO_SKIPFRAMES. Thus, less image will be
used for the automatic controls which takes load off the camera.

Input parameters

hCam Camera handle

param Configure auto function

Enabling auto functions and querying the status

IS_SET_ENABLE_AUTO_GAIN Enables/disables the auto gain control function

Control parameters

pval1 = 1 enables control, 0 disables control

IS_GET_ENABLE_AUTO_GAIN Returns the current auto gain setting or white level
adjustment

Control parameters

pval1: returns the current setting

IS_SET_ENABLE_AUTO_SENSOR_GAIN Enables/disables the internal auto gain control function of
the sensor*1

Control parameters

pval1 = 1 enables control, 0 disables control

IS_GET_ENABLE_AUTO_SENSOR_GAIN Returns the current auto gain setting of the sensor*1

Control parameters

pval1: returns the current setting

IS_SET_ENABLE_AUTO_SHUTTER Enables/disables the auto exposure shutter function.

Control parameters

pval1 = 1 enables control, 0 disables control

45

© 2013 Thorlabs GmbH304

DCx Cameras

hCam Camera handle

IS_GET_ENABLE_AUTO_SHUTTER Returns the current auto exposure shutter setting.

Control parameters

pval1: returns the current setting

IS_SET_ENABLE_AUTO_SENSOR_SHUTTER Enables/disables the sensor's internal auto exposure
shutter function*1

Control parameters

pval1 = 1 enables control, 0 disables control

IS_GET_ENABLE_AUTO_SENSOR_SHUTTER Returns the sensor's current auto exposure shutter
setting*1

Control parameters

pval1: returns the current setting

IS_SET_ENABLE_AUTO_WHITEBALANCE Enables/disables the auto white balance function.

Control parameters

pval1 = 1 enables control, 0 disables control

IS_GET_ENABLE_AUTO_WHITEBALANCE Returns the current auto white balance setting.

Control parameters

pval1: returns the current setting

IS_SET_ENABLE_AUTO_SENSOR_WHITEBALANCE Enables/disables the sensor's internal auto white balance
function*1

Control parameters

pval1: white balance mode (see is_GetAutoInfo()
):

WB_MODE_DISABLE

WB_MODE_AUTO

WB_MODE_ALL_PULLIN

WB_MODE_INCANDESCENT_LAMP

WB_MODE_FLUORESCENT_DL

WB_MODE_OUTDOOR_CLEAR_SKY

WB_MODE_OUTDOOR_CLOUDY

IS_GET_ENABLE_AUTO_SENSOR_WHITEBALANCE Returns the sensor's current auto white balance setting*1

Control parameters

pval1: returns the current setting

IS_SET_ENABLE_AUTO_FRAMERATE Enables/disables the auto frame rate function.

Control parameters

pval1 = 1 enables control, 0 disables control

IS_GET_ENABLE_AUTO_FRAMERATE Returns the current auto frame rate setting.

Control parameters

pval1: returns the current setting

IS_SET_ENABLE_AUTO_SENSOR_FRAMERATE Enables/disables the sensor's internal auto frame rate
function*1

Control parameters

pval1 = 1 enables control, 0 disables control

IS_GET_ENABLE_AUTO_SENSOR_FRAMERATE Returns the sensor's current auto frame rate setting*1

Control parameters

pval1: returns the current setting

Adjusting auto gain control/auto exposure shutter

IS_SET_AUTO_REFERENCE Sets the setpoint for auto gain control/auto exposure
shutter.

Control parameters

pval1: defines the setpoint (average brightness of the

227

© 2013 Thorlabs GmbH

4 Programming (SDK)

305

hCam Camera handle

image); the following rule applies independently of the
image bit depth:

0 = black

128 = 50% gray (default)

255 = white

Note on the sensor's internal control functionality

When using the sensor's internal control functionality, you
can only used values in a range between [44...235]. The
increment in this range is 4. Smaller values are
automatically set to 44, larger values to 235.

IS_GET_AUTO_REFERENCE Returns the set point for auto gain control/auto exposure
shutter.

Control parameters

pval1: returns the current setting

IS_SET_AUTO_GAIN_MAX Sets the upper limit for auto gain control.

Control parameters

pval1: valid value for gain (0...100)

IS_GET_AUTO_GAIN_MAX Returns the upper limit for auto gain control.

Control parameters

pval1: returns the current setting

IS_SET_AUTO_SHUTTER_MAX Sets the upper limit for auto exposure shutter.

Control parameters

pval1: valid exposure value (0 sets the value
continuously to max. exposure)

IS_GET_AUTO_SHUTTER_MAX Returns the upper limit for auto exposure shutter.

Control parameters

pval1: returns the current setting

IS_SET_AUTO_BRIGHTNESS_ONCE Enables/disables the automatic disable for automatic
brightness control (gain and exposure time)*2

Control parameters

pval1 = 1 enables control, 0 disables control

IS_GET_AUTO_BRIGHTNESS_ONCE Returns the automatic disable status*2

Control parameters

pval1: returns the current setting

Speed and hysteresis

IS_SET_AUTO_SPEED Sets the speed value for the auto function.

Control parameters

pval1: defines the control speed (0...100)

IS_GET_AUTO_SPEED Returns the speed value for the auto function.

Control parameters

pval1: returns the current setting

IS_SET_AUTO_SKIPFRAMES Sets the number of frames to be skipped during
automatic control.

Control parameters

pval1: defines the number of frames to be skipped
during automatic control (default: 4)

IS_GET_AUTO_SKIPFRAMES Returns the number of frames to be skipped during
automatic control.

Control parameters

pval1: returns the current setting

IS_GET_AUTO_SKIPFRAMES_RANGE Returns the permissible range for the number of frames
to be skipped.

© 2013 Thorlabs GmbH306

DCx Cameras

hCam Camera handle

Control parameters

pval1: returns the minimum permitted value

pval2: returns the maximum permitted value

IS_SET_AUTO_HYSTERESIS Sets the hysteresis value for auto exposure shutter and
auto gain control.

Control parameters

pval1: defines the hysteresis value (default: 2)

IS_GET_AUTO_HYSTERESIS Returns the hysteresis value for auto exposure shutter
and auto gain control.

Control parameters

pval1: returns the current setting

IS_GET_AUTO_HYSTERESIS_RANGE Returns the permissible range for the hysteresis value.

Control parameters

pval1: returns the minimum permitted value

pval2: returns the maximum permitted value

Photometric settings for auto gain control/auto exposure shutter

IS_SET_SENS_AUTO_SHUTTER_PHOTOM Sets the photometry mode for auto exposure shutter.

Control parameters

pval1: defines which fields of view are used for auto
exposure shutter (see is_GetAutoInfo()):

AS_PM_NONE

AS_PM_SENS_CENTER_WEIGHTED

AS_PM_SENS_CENTER_SPOT

AS_PM_SENS_PORTRAIT

AS_PM_SENS_LANDSCAPE

IS_GET_SENS_AUTO_SHUTTER_PHOTOM Returns the photometry mode for auto exposure shutter.

Control parameters

pval1: returns the current setting

IS_GET_SENS_AUTO_SHUTTER_PHOTOM_DEF Returns the default photometry mode for auto exposure
shutter.

Control parameters

pval1: returns the default

IS_SET_SENS_AUTO_GAIN_PHOTOM Sets the photometry mode for auto gain control.

Control parameters

pval1: defines which fields of view are used for auto
gain control (see is_GetAutoInfo()):

AG_PM_NONE

AG_PM_SENS_CENTER_WEIGHTED

AG_PM_SENS_CENTER_SPOT

AG_PM_SENS_PORTRAIT

AG_PM_SENS_LANDSCAPE

IS_GET_SENS_AUTO_GAIN_PHOTOM Returns the photometry mode for auto gain control.

Control parameters

pval1: returns the current setting

IS_GET_SENS_AUTO_GAIN_PHOTOM_DEF Returns the default photometry mode for auto gain
control.

Control parameters

pval1: returns the default

Adjusting auto white balance

IS_SET_AUTO_WB_OFFSET Sets the offset values for the red and blue channels.

227

227

© 2013 Thorlabs GmbH

4 Programming (SDK)

307

hCam Camera handle

Control parameters

pval1: defines the red level offset (-50...50)

pval2: defines the blue level offset (-50...50)

IS_GET_AUTO_WB_OFFSET Returns the offset values for the red and blue channels.

Control parameters

pval1: returns the red level offset (-50...50)

pval2: returns the blue level offset (-50...50)

IS_SET_AUTO_WB_GAIN_RANGE Sets the color gain limits for auto white balance.

Control parameters

pval1: sets the lowest gain value

pval2: sets the highest gain value

IS_GET_AUTO_WB_GAIN_RANGE Returns the color gain limits for auto white balance.

Control parameters

pval1: returns the minimum permitted gain value

pval2: returns the maximum permitted gain value

IS_SET_AUTO_WB_ONCE Sets automatic disabling of auto white balance*2

Control parameters

pval1 = 1 enables control, 0 disables control

IS_GET_AUTO_WB_ONCE Returns the automatic disable status*2

Control parameters

pval1: returns the current setting

Speed and hysteresis

IS_SET_AUTO_WB_SPEED Sets the speed for auto white balance.

Control parameters

pval1: defines the control speed (0...100)

IS_GET_AUTO_WB_SPEED Returns the speed for auto white balance.

Control parameters

pval1: returns the current setting

IS_SET_AUTO_WB_HYSTERESIS Sets the hysteresis value for auto white balance.

Control parameters

pval1: defines the hysteresis value (default: 2)

IS_GET_AUTO_WB_HYSTERESIS Returns the hysteresis value for auto white balance.

Control parameters

pval1: returns the current setting

IS_GET_AUTO_WB_HYSTERESIS_RANGE Returns the permissible range for the hysteresis value.

Control parameters

pval1: returns the minimum permitted value

pval2: returns the maximum permitted value

IS_SET_AUTO_WB_SKIPFRAMES Sets the number of frames to be skipped during
automatic control.

Control parameters

pval1: defines the number (default: 4)

IS_GET_AUTO_WB_SKIPFRAMES Returns the number of frames to be skipped during
automatic control.

Control parameters

pval1: returns the current setting

IS_GET_AUTO_WB_SKIPFRAMES_RANGE Returns the permissible range for the number of frames
to be skipped.

Control parameters

© 2013 Thorlabs GmbH308

DCx Cameras

hCam Camera handle

pval1: returns the minimum permitted value

pval2: returns the maximum permitted value

Default values for auto gain control/auto exposure shutter

NULL is passed for the pval1, pval2 parameters.

IS_DEFAULT_AUTO_BRIGHT_REFERENCE Default setpoint for auto gain control and auto exposure
shutter.

IS_MIN_AUTO_BRIGHT_REFERENCE Minimum setpoint for auto gain control and auto
exposure shutter.

IS_MAX_AUTO_BRIGHT_REFERENCE Maximum setpoint for auto gain control and auto
exposure shutter.

IS_DEFAULT_AUTO_SPEED Default value for auto speed.

IS_MAX_AUTO_SPEED Maximum value for auto speed

Default values for Auto White Balance

NULL is passed for the pval1, pval2 parameters.

IS_MIN_WB_OFFSET Minimum value for auto white balance offset.

IS_MAX_WB_OFFSET Maximum value for auto white balance offset.

IS_DEFAULT_AUTO_WB_SPEED Default value for auto white balance speed.

IS_MIN_AUTO_WB_SPEED Minimum value for auto white balance speed.

IS_MAX_AUTO_WB_SPEED Maximum value for auto white balance speed.

pval1 Control parameter, can have a variable value depending
on the corresponding auto function

pval2 Control parameter, can have a variable value depending
on the corresponding auto function

*1 Not all sensors support this feature (see information box)

*2 Not with use of sensor's internal control functionality

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INCOMPATIBLE_SETTING Because of other incompatible settings the function is
not possible.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_INVALID_WB_BINNING_MODE Mono binning/mono sub-sampling do not support
automatic white balance.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

© 2013 Thorlabs GmbH

4 Programming (SDK)

309

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

Related functions

is_ParameterSet()

is_GetAutoInfo()

is_SetHardwareGain()

is_SetHWGainFactor()

is_Exposure()

is_SetFrameRate()

is_AOI()

Examples

//Enable auto gain control:
double dEnable = 1;
int ret = is_SetAutoParameter (hCam, IS_SET_ENABLE_AUTO_GAIN, &dEnable, 0);

//Set brightness setpoint to 128:
double nominal = 128;
int ret = is_SetAutoParameter (hCam, IS_SET_AUTO_REFERENCE, &nominal, 0);

//Return shutter control limit:
double maxShutter;
int ret = is_SetAutoParameter (hCam, IS_GET_AUTO_SHUTTER_MAX, &maxShutter, 0);

292

227

333

335

216

329

159

© 2013 Thorlabs GmbH310

DCx Cameras

4.3.75 is_SetBinning

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetBinning (HIDS hCam, INT mode)

Description

Using is_SetBinning(), you can enable the binning mode both in horizontal and in vertical direction. This way,
the image size in the binning direction can be reduced without scaling down the area of interest. Depending on the
sensor used, the sensitivity or the frame rate can be increased while binning is enabled.

To enable horizontal and vertical binning at the same time, you can link the horizontal and vertical binning
parameters by a logical OR.

The adjustable binning factors of each sensor are listed in the Camera and sensor data chapter.

Note

Some sensors allow a higher pixel clock setting if binning or subsampling has been activated. If you set a higher
pixel clock and then reduce the binning/subsampling factors again, the driver will automatically select the highest
possible pixel clock for the new settings.

Attention

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After
executing is_SetBinning(), calling the following functions is recommended in order to keep the defined
camera settings:

is_SetFrameRate()

is_Exposure()

If you are using the DCx Camera's flash function: is_IO()

Note

For the models DCC1240x Binning can be used only combined for the horizontal and the vertical direction. Please
see also the information in section DCC1240x / DCC3240x Application Notes .

Input parameters

hCam Camera handle

mode

IS_BINNING_DISABLE Disables binning.

IS_BINNING_2X_VERTICAL Enables vertical binning with factor 2.

IS_BINNING_3X_VERTICAL Enables vertical binning with factor 3.

IS_BINNING_4X_VERTICAL Enables vertical binning with factor 4.

IS_BINNING_5X_VERTICAL Enables vertical binning with factor 5.

IS_BINNING_6X_VERTICAL Enables vertical binning with factor 6.

IS_BINNING_8X_VERTICAL Enables vertical binning with factor 8.

IS_BINNING_16X_VERTICAL Enables vertical binning with factor 16.

IS_BINNING_2X_HORIZONTAL Enables horizontal binning with factor 2.

IS_BINNING_3X_HORIZONTAL Enables horizontal binning with factor 3.

IS_BINNING_4X_HORIZONTAL Enables horizontal binning with factor 4.

IS_BINNING_5X_HORIZONTAL Enables horizontal binning with factor 5.

IS_BINNING_6X_HORIZONTAL Enables horizontal binning with factor 6.

IS_BINNING_8X_HORIZONTAL Enables horizontal binning with factor 8.

460

329

216

280

63

© 2013 Thorlabs GmbH

4 Programming (SDK)

311

hCam Camera handle

IS_BINNING_16X_HORIZONTAL Enables horizontal binning with factor 16.

IS_GET_BINNING Returns the current setting.

IS_GET_BINNING_FACTOR_VERTICAL Returns the vertical binning factor.

IS_GET_BINNING_FACTOR_HORIZONTAL Returns the horizontal binning factor.

IS_GET_SUPPORTED_BINNING Returns the supported binning modes.

IS_GET_BINNING_TYPE Indicates whether the camera uses color-proof binning
(IS_BINNING_COLOR) or not (IS_BINNING_MONO)

Return values

When used with
IS_GET_BINNING

Current setting

When used with
IS_GET_BINNING_FACTOR_VERTICAL
IS_GET_BINNING_FACTOR_HORIZONTAL

Current setting: Returns the current factor as integer
value (2, 3, 4, 5, 6, 8, 16)

When used with
IS_GET_BINNING_TYPE

Returns IS_BINNING_COLOR if the camera uses color-
proof binning; otherwise, IS_BINNING_MONO is
returned.

When used with
IS_GET_SUPPORTED_BINNING

Returns the supported binning modes linked by logical
ORs.

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence
and cannot be added again.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_CAPTURE_RUNNING A capturing operation is in progress and must be
terminated before you can start another one.

IS_DR_CANNOT_CREATE_SURFACE The image surface or overlay surface could not be
created.

IS_DR_CANNOT_CREATE_TEXTURE The texture could not be created.

IS_DR_CANNOT_CREATE_VERTEX_BUFFER The vertex buffer could not be created.

IS_DR_DEVICE_OUT_OF_MEMORY Not enough graphics memory available.

IS_DR_LIBRARY_NOT_FOUND The DirectRenderer library could not be found.

IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to store
the image in the desired format.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAPTURE_MODE The function can not be executed in the current camera
operating mode (free run, trigger or standby).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_INVALID_PIXEL_CLOCK This setting is not available for the currently set pixel
clock frequency.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file

© 2013 Thorlabs GmbH312

DCx Cameras

(uc480_usb.sys) do not match.

IS_NO_ACTIVE_IMG_MEM No active image memory available. You must set the
memory to active using the is_SetImageMem()
function or create a sequence using the
is_AddToSequence() function.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

IS_TRIGGER_ACTIVATED The function cannot be used because the camera is
waiting for a trigger signal.

Related functions

is_SetSubSampling()

is_AOI()

is_SetImagePos()

is_PixelClock()

347

159

435

294

© 2013 Thorlabs GmbH

4 Programming (SDK)

313

4.3.76 is_SetCameraID

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetCameraID (HIDS hCam, INT nID)

Description

Using is_SetCameraID(), you can assign a unique camera ID to a camera. Thus, it is possible to access the
camera directly with the is_InitCamera() function.

The camera ID is stored in the non-volatile memory of the camera. The factory default camera ID is 1. The camera
ID can also be changed in the uc480 Camera Manager.

Input parameters

hCam Camera handle

nID

1...254 New camera ID

IS_GET_CAMERA_ID Returns the current ID.

Return values

When used together with
IS_GET_CAMERA_ID

Current ID

IS_ACCESS_VIOLATION An internal error has occured.

The camera ID cannot be changed because the camera
is running in the boot-boost mode.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

Related functions

is_InitCamera()

273

273

© 2013 Thorlabs GmbH314

DCx Cameras

is_GetCameraInfo()

is_CameraStatus()

231

172

© 2013 Thorlabs GmbH

4 Programming (SDK)

315

4.3.77 is_SetColorConverter

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetColorConverter (HIDS hCam, INT ColorMode, INT ConvertMode)

Description

Using is_SetColorConverter(), you can select the type of Bayer conversion for color cameras. Software
conversion is done on the PC. The use of a larger filter mask results in a higher image quality, but increases the
computational load. For further information, please refer to the Camera basics: Color filters chapter.

Note

Software conversion with the large filter mask should only be used for sensors whose green pixels have the same
sensitivity. This applies to all DCU22xX CCD cameras.

For all other sensors, we recommend using the standard filter mask.

Attention

While free run mode is active, you cannot change the color conversion type. To do so, you must first stop the
capturing process using is_StopLiveVideo() or set the camera to trigger mode (see
is_SetExternalTrigger()).

Input parameters

hCam Camera handle

ColorMode Color mode for which the converter is to be set.

For a list of all available color formats and the
associated input parameters, see the Appendix: Color
and memory formats section.

ConvertMode Conversion mode selection

IS_CONV_MODE_NONE No conversion

IS_CONV_MODE_SOFTWARE Only for monochrome cameras, if you want to add a
gamma

IS_CONV_MODE_SOFTWARE_3X3 Software conversion using the standard filter mask
(default)

IS_CONV_MODE_SOFTWARE_5X5 Software conversion using a large filter mask

IS_CONV_MODE_HARDWARE_3X3 (Not applicable to DCx Cameras)

IS_CONV_MODE_OPENCL_3X3 Software conversion using the standard filter mask, but
conversion is done on the graphic board

IS_CONV_MODE_OPENCL_5X5 (Not applicable to DCx Cameras)

Return values

IS_INVALID_COLOR_FORMAT Parameter ColorMode invalid or not supported

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_CAPTURE_RUNNING A capturing operation is in progress and must be
terminated before you can start another one.

IS_INVALID_COLOR_FORMAT Invalid color format

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not

26

353

327

502

© 2013 Thorlabs GmbH316

DCx Cameras

available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_IR_FILTER No IR filter available

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SUCCESS Function executed successfully

Related functions

is_GetColorConverter()

is_SetColorMode()

is_Convert()

236

319

188

© 2013 Thorlabs GmbH

4 Programming (SDK)

317

4.3.78 is_SetColorCorrection

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetColorCorrection (HIDS hCam, INT nEnable, double* factors)

Description

For color cameras, is_SetColorCorrection() enables color correction in the uc480 driver. This enhances the
rendering of colors for cameras with color sensors. Color correction is a digital correction based on a color matrix
which is adjusted individually for each sensor.

Note

After changing this parameter, perform manual or automatic white balancing in order to obtain correct color
rendering (see also is_SetAutoParameter()).

Input parameters

hCam Camera handle

nEnable

IS_CCOR_ENABLE_NORMAL Enables simple color correction. This parameter
replaces IS_CCOR_ENABLE.

IS_CCOR_ENABLE_BG40_ENHANCED Enables color correction for cameras with optical IR
filter glasses of the BG40 type.

IS_CCOR_ENABLE_HQ_ENHANCED Enables color correction for cameras with optical IR
filter glasses of the HQ type.

IS_CCOR_SET_IR_AUTOMATIC Enables color correction for cameras with optical IR
filter glasses. The glass type is set automatically as
specified in the camera EEPROM.

IS_CCOR_DISABLE Disables color correction.

IS_GET_CCOR_MODE Returns the current setting.

IS_GET_SUPPORTED_CCOR_MODE Returns all supported color correction modes. See the
Return values section.

IS_GET_DEFAULT_CCOR_MODE Returns the default color correction mode.

factors Sets the strength of the color correction between 0.0 (no
correction) and 1.0 (strong correction).

Return values

When used together with
IS_GET_CCOR_MODE

Current setting

When used together with
IS_GET_SUPPORTED_CCOR_MODE

When used for color cameras and together with
IS_GET_SUPPORTED_CCOR_MODE, this parameter
returns the supported values linked by a logical OR:

IS_CCOR_ENABLE_NORMAL

IS_CCOR_ENABLE_BG40_ENHANCED

IS_CCOR_ENABLE_HQ_ENHANCED

When used for monochrome cameras, the system returns
0.

When used together with
IS_GET_DEFAULT_CCOR_MODE

When used for color cameras and together with
IS_GET_DEFAULT_CCOR_MODE, this parameter returns
the default color correction mode:

IS_CCOR_ENABLE_NORMAL

IS_CCOR_ENABLE_HQ_ENHANCED

303

© 2013 Thorlabs GmbH318

DCx Cameras

When used for monochrome cameras, the system returns
0.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range
or is not supported for this sensor or is not available in this
mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_IR_FILTER No IR filter available

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

Related functions

is_SetColorConverter()

is_SetColorMode()

is_SetAutoParameter()

315

319

303

© 2013 Thorlabs GmbH

4 Programming (SDK)

319

4.3.79 is_SetColorMode

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetColorMode (HIDS hCam, INT Mode)

Description

is_SetColorMode() sets the color mode to be used when image data are saved or displayed by the graphics
card. For this purpose, the allocated image memory must be large enough to accommodate the data with the
selected color mode. When images are transferred directly to the graphics card memory, make sure that the
display settings match the color mode settings. Otherwise, the images will be displayed with altered colors or are
not clearly visible.

Notes

Display Modes

This function is only supported in the bitmap (DIB) display mode. Use the is_SetDisplayMode() function to
display other color formats in Direct3D or OpenGL mode.

Bit Depth

Color formats with a bit depth of more than 8 bits per channel are not supported by DCx camera models.

RGB15/16

For the RGB16 and RGB15 data formats, the MSBs of the internal 8-bit R, G and B colors are used.

Input parameters

hCam Camera handle

Mode: Color mode to be set. For a list of all available color formats and the associated input parameters, see the
Appendix: Color and memory formats section.

IS_CM_MONO16 Grayscale (16), for monochrome and color cameras, LUT/gamma active

IS_CM_MONO12 Grayscale (12), for monochrome and color cameras, LUT/gamma active

IS_CM_MONO8 Grayscale (8), for monochrome and color cameras, LUT/gamma active

IS_CM_SENSOR_RAW16 Raw sensor data (16), for monochrome and color cameras, LUT/gamma
active

IS_CM_SENSOR_RAW12 Raw sensor data (12), for monochrome and color cameras, LUT/gamma
active

IS_CM_SENSOR_RAW8 Raw sensor data (8), for monochrome and color cameras, LUT/gamma active

IS_CM_RGB12_PACKED RGB36 (12 12 12), for monochrome and color cameras, LUT/gamma active.

IS_CM_RGB10_PACKED RGB30 (10 10 10), for monochrome and color cameras, LUT/gamma active

IS_CM_RGB8_PACKED RGB24 (8 8 8), for monochrome and color cameras, LUT/gamma active

IS_CM_RGBA12_PACKED RGB48 (12 12 12), for monochrome and color cameras, LUT/gamma active

IS_CM_RGBA8_PACKED RGB32 (8 8 8), for monochrome and color cameras, LUT/gamma active

IS_CM_RGBY8_PACKED RGBY (8 8 8 8), for monochrome and color cameras, LUT/gamma active

IS_CM_BGR12_PACKED BGR36 (12 12 12), for monochrome and color cameras, LUT/gamma active

IS_CM_BGR10_PACKED BGR30 (10 10 10), for monochrome and color cameras, LUT/gamma active

IS_CM_BGR8_PACKED BGR24 (8 8 8), for monochrome and color cameras, LUT/gamma active

IS_CM_BGRA12_PACKED BGR48 (12 12 12), for monochrome and color cameras, LUT/gamma active

IS_CM_BGRA8_PACKED BGR32 (8 8 8), for monochrome and color cameras, LUT/gamma active

IS_CM_BGRY8_PACKED BGRY (8 8 8), for monochrome and color cameras, LUT/gamma active

322

502

© 2013 Thorlabs GmbH320

DCx Cameras

hCam Camera handle

IS_CM_RGB8_PLANAR Planar RGB (8) for monochrome and color cameras, LUT/gamma active

IS_CM_BGR565_PACKED BGR16 (5 6 5), for monochrome and color cameras, LUT/gamma active

IS_CM_BGR5_PACKED BGR15 (5 5 5), for monochrome and color cameras, LUT/gamma active

IS_CM_UYVY_PACKED YUV 4:2:2 (8 8), for monochrome and color cameras, LUT/gamma active

IS_CM_CBYCRY_PACKED YCbCr 4:2:2 (8 8), for monochrome and color cameras, LUT/gamma active

IS_GET_COLOR_MODE Returns the current setting.

Return values

When used together with
IS_GET_COLOR_MODE

Current setting

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_CAPTURE_RUNNING A capturing operation is in progress and must be
terminated before you can start another one.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_COLOR_FORMAT Invalid color format

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_IR_FILTER No IR filter available

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

Related functions

is_SetDisplayMode()

is_SetColorConverter()

is_SetColorCorrection()

is_GetColorDepth()

is_AllocImageMem()

is_RenderBitmap()

322

315

317

237

157

297

© 2013 Thorlabs GmbH

4 Programming (SDK)

321

Note on obsolete parameters

The following parameters for color formats are obsolete. Only the new parameters should be used:

Old parameter New parameter

IS_SET_CM_RGB32 IS_CM_BGRA8_PACKED

IS_SET_CM_RGB24 IS_CM_BGR8_PACKED

IS_SET_CM_RGB16 IS_CM_BGR565_PACKED

IS_SET_CM_RGB15 IS_CM_BGR555_PACKED

IS_SET_CM_Y8 IS_CM_MONO8

IS_SET_CM_BAYER IS_CM_BAYER_RG8

IS_SET_CM_UYVY IS_CM_UYVY_PACKED

IS_SET_CM_UYVY_MONO IS_CM_UYVY_MONO_PACKED

IS_SET_CM_UYVY_BAYER IS_CM_UYVY_BAYER_PACKED

IS_SET_CM_CBYCRY IS_CM_CBYCRY_PACKED

IS_SET_CM_RGBY IS_CM_BGRY8_PACKED

IS_SET_CM_RGB30 IS_CM_BGR10V2_PACKED

IS_SET_CM_Y12 IS_CM_MONO12

IS_SET_CM_BAYER12 IS_CM_BAYER_RG12

IS_SET_CM_Y16 IS_CM_MONO16

IS_SET_CM_BAYER16 IS_CM_BAYER_RG16

IS_CM_BGR10V2_PACKED IS_CM_BGR10_PACKED

IS_CM_RGB10V2_PACKED IS_CM_RGB10_PACKED

IS_CM_BGR555_PACKED IS_CM_BGR5_PACKED

IS_CM_BAYER_RG8 IS_CM_SENSOR_RAW8

IS_CM_BAYER_RG12 IS_CM_SENSOR_RAW12

IS_CM_BAYER_RG16 IS_CM_SENSOR_RAW16

© 2013 Thorlabs GmbH322

DCx Cameras

4.3.80 is_SetDisplayMode

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetDisplayMode (HIDS hCam, INT Mode)

Description

Using is_SetDisplayMode(), you can set the way in which images will be displayed on the screen.

For live videos including overlays, you can use the Direct3D or OpenGL mode. These modes are not supported by
all graphics cards. The graphics card must have sufficient extended memory because the overlay mode requires
additional memory up to the size needed for the current screen resolution.

For further information on the display modes of the DCx camera, see the How to proceed: Image display
section.

Attention

The Direct3D display mode is not available on Linux operating systems.

Note

We recommend that you call the following functions exclusively from a single thread in order to avoid unpredictable
behaviour of the application.

is_InitCamera()

is_SetDisplayMode()

is_ExitCamera()

See also Programming: Thread programming

Input parameters

hCam Camera handle

Mode

IS_SET_DM_DIB Captures an image in system memory (RAM). Using
is_RenderBitmap() , you can define the image
display (default).

IS_SET_DM_DIRECT3D Image display in Direct3D mode

IS_SET_DM_DIRECT3D |
IS_SET_DM_MONO

Monochrome image display in Direct3D mode

IS_SET_DM_DIRECT3D |
IS_SET_DM_BAYER

Raw Bayer format image display in Direct3D mode

IS_SET_DM_OPENGL Image display in OpenGL mode

IS_SET_DM_OPENGL |
IS_SET_DM_MONO

Monochrome image display in OpenGL mode

IS_SET_DM_OPENGL |
IS_SET_DM_BAYER

Raw Bayer format image display in OpenGL mode

IS_GET_DISPLAY_MODE Returns the current setting.

Attention

The new Direct3D mode completely replaces the "BackBuffer" and "Overlay Surface" display modes from
DirectDraw. It is advisable not to use these modes any longer (see also Obsolete functions). To activate the
obsolete modes, do the following:

IS_SET_DM_DIRECTDRAW |
IS_SET_DM_BACKBUFFER

Image display in DirectDraw BackBuffer mode

IS_SET_DM_DIRECTDRAW | Image display in DirectDraw Overlay Surface mode

133

273

322

213

453

297

379

© 2013 Thorlabs GmbH

4 Programming (SDK)

323

IS_SET_DM_ALLOW_OVERLAY

IS_SET_DM_ALLOW_SCALING Real-time scaling in Overlay Surface mode

Return values

When used with
IS_GET_DISPLAY_MODE

Current setting

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence
and cannot be added again.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_CAPTURE_RUNNING A capturing operation is in progress and must be
terminated before you can start another one.

IS_DR_CANNOT_CREATE_SURFACE The image surface or overlay surface could not be
created.

IS_DR_CANNOT_CREATE_TEXTURE The texture could not be created.

IS_DR_CANNOT_CREATE_VERTEX_BUFFER The vertex buffer could not be created.

IS_DR_DEVICE_OUT_OF_MEMORY Not enough graphics memory available.

IS_DR_LIBRARY_NOT_FOUND The DirectRenderer library could not be found.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_COLOR_FORMAT Invalid color format

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_IR_FILTER No IR filter available

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

Related functions

is_RenderBitmap()

is_SetColorMode()

is_DirectRenderer()

297

319

198

© 2013 Thorlabs GmbH324

DCx Cameras

Example

is_SetDisplayMode (hCam, Mode);

//Bitmap mode (images are digitized and stored in system memory):
Mode = IS_SET_DM_DIB

//Direct3D mode
Mode = IS_SET_DM_DIRECT3D

© 2013 Thorlabs GmbH

4 Programming (SDK)

325

4.3.81 is_SetDisplayPos

USB 2.0

USB 3.0
-

Syntax

INT is_SetDisplayPos (HIDS hCam, INT x, INT y)

Description

is_SetDisplayPos() allows you to move an area of interest when rendering images using is_RenderBitmap
() . The function moves the camera image by the selected offset within the output window. The image memory
remains unchanged.

Note

To set the size and position of an area of interest in memory, use the is_AOI() functions.

Input parameters

hCam Camera handle

x Offset in x direction, measured from the top left corner of the output window

y Offset in y direction, measured from the top left corner of the output window

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_AOI()

is_RenderBitmap()

is_SetDisplayMode()

297

159

159

297

322

© 2013 Thorlabs GmbH326

DCx Cameras

4.3.82 is_SetErrorReport

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetErrorReport (HIDS hCam, INT Mode)

Description

Using is_SetErrorReport(), you can enable/disable error event logging. If error reporting is enabled, errors
will automatically be displayed in a dialog box. Cancelling the dialog box disables the error report. Even with
disabled error reporting, you can still query errors using the is_GetError() function.

Note

is_SetErrorReport() can be called before calling is_InitCamera() .

You only need to enable the is_SetErrorReport() function once for all cameras in the application.

Input parameters

hCam Camera handle

Or 0 if no camera has been initialized yet

Mode

IS_DISABLE_ERR_REP Disables error reporting.

IS_ENABLE_ERR_REP Enables error reporting.

IS_GET_ERR_REP_MODE Current status of error reporting.

Return values

When used with
IS_GET_ERR_REP_MODE

Current setting

IS_SUCCESS Function executed successfully

Related functions

is_GetError()

is_CaptureStatus()

is_CameraStatus()

239

273

239

174

172

© 2013 Thorlabs GmbH

4 Programming (SDK)

327

4.3.83 is_SetExternalTrigger

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetExternalTrigger (HIDS hCam, INT nTriggerMode)

Description

Using is_SetExternalTrigger(), you can activate the trigger mode. If the camera is in standby mode, it quits
this mode and activates trigger mode.

In hardware trigger mode, image capture is delayed for each function call until the selected trigger event has
occurred.

In software trigger mode, an image is captured immediately when is_FreezeVideo() is called, or a
continuous triggered capture is started when is_CaptureVideo() is called. In hardware trigger mode, you
can use the is_ForceTrigger() command to trigger an image capture even if no electric signal is present.

When you disable the trigger functionality, you can query the signal level at the trigger input. This option causes the
camera to change to freerun mode.

For further information on the image capture modes of the DCx camera, see How to proceed: Image capture .

Input parameters

hCam Camera handle

nTriggerMode

Trigger mode Trigger event

IS_SET_TRIGGER_OFF Off -

IS_SET_TRIGGER_HI_LO Hardware trigger Falling signal edge

IS_SET_TRIGGER_LO_HI Hardware trigger Rising signal edge

IS_SET_TRIGGER_PRE_HI_LO (Not supported by DCx Cameras)

IS_SET_TRIGGER_PRE_LO_HI (Not supported by DCx Cameras)

IS_SET_TRIGGER_HI_LO_SYNC (Not supported by DCx Cameras)

IS_SET_TRIGGER_LO_HI_SYNC (Not supported by DCx Cameras)

IS_SET_TRIGGER_SOFTWARE Software trigger Call of is_FreezeVideo()
(single frame mode)

Call of is_CaptureVideo()
(continuous mode)

IS_GET_EXTERNALTRIGGER Returns the trigger mode setting

IS_GET_TRIGGER_STATUS Returns the current signal level at the trigger input

IS_GET_SUPPORTED_TRIGGER_M

ODE
Returns the supported trigger modes

Return values

When used with
IS_GET_EXTERNALTRIGGER

Returns the current setting

When used with
IS_GET_TRIGGER_STATUS

Returns the current signal level at the trigger input

When used with
IS_GET_SUPPORTED_TRIGGER_MODE

Returns the supported modes linked by logical ORs

IS_INVALID_CAPTURE_MODE The function can not be executed in the current camera
operating mode (free run, trigger or standby).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

223

177

221

134

223

177

© 2013 Thorlabs GmbH328

DCx Cameras

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_CaptureVideo()

is_FreezeVideo()

is_ForceTrigger()

is_SetTriggerCounter()

is_SetTriggerDelay()

is_IO()

Example

//Enable trigger mode and set high-active flash mode.
is_SetExternalTrigger(hCam, IS_SET_TRIGGER_SOFTWARE);

// Set the flash to a high active pulse for each image in the trigger mode
UINT nMode = IO_FLASH_MODE_TRIGGER_HI_ACTIVE;
is_IO(m_hCam, IS_IO_CMD_FLASH_SET_MODE, (void*)&nMode, sizeof(nMode));

is_FreezeVideo(hCam, IS_WAIT);

Sample programs

uc480 Simple Trigger (C++)

uc480 IO (C++)

177

223

221

351

352

280

© 2013 Thorlabs GmbH

4 Programming (SDK)

329

4.3.84 is_SetFrameRate

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetFrameRate (HIDS hCam, double FPS, double* newFPS)

Description

Using is_SetFrameRate(), you can set the sensor frame rate in freerun mode (live mode). Since this value
depends on the sensor timing, the exposure time actually used may slightly deviate from the value set here. After
you have called the function, the actual frame rate is returned through the newFPS parameter.

If the frame rate is set too high, it might not be possible to transfer every single frame. In this case, the effective
frame rate may vary from the set value.

For minimum and maximum frame rates as well as other sensor-based dependencies, please refer to Camera and
sensor data chapter.

Note

Newer driver versions sometimes allow an extended value range for the frame rate setting. We recommend to
query the value range every time and set the frame rate explicitly.

Changes to the frame rate affect the value ranges of the exposure time. After executing is_SetFrameRate(),
calling the function is_Exposure() is recommended in order to keep the defined camera settings.

Attention

The use of the following functions will affect the frame rate:

is_PixelClock()

is_SetOptimalCameraTiming()

is_AOI() (if the image size is changed)

is_SetSubSampling()

is_SetBinning()

Changes made to the window size or the read-out timing (pixel clock frequency) also affect the defined frame rate.
For this reason, you need to call is_SetFrameRate() again after such changes.

Attention

To be able to set the default frame rate, you have to set a pixel clock equal to or higher than the default pixel clock.

Input parameters

hCam Camera handle

FPS Desired frame rate in frames per second (fps)

IS_GET_FRAMERATE Returns the set frame rate in the newFPS parameter. To
query the frame rate actually reached by the camera, use
is_GetFramesPerSecond() .

IS_GET_DEFAULT_FRAMERATE Returns the default frame rate.

newFPS Returns the frame rate actually set.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

460

216

294

338

159

347

310

240

© 2013 Thorlabs GmbH330

DCx Cameras

Related functions

is_GetFramesPerSecond()

is_GetFrameTimeRange()

is_PixelClock()

is_SetOptimalCameraTiming()

is_Exposure()

is_SetAutoParameter()

is_AOI()

is_SetSubSampling()

is_SetBinning()

is_CaptureVideo()

240

241

294

338

216

303

159

347

310

177

© 2013 Thorlabs GmbH

4 Programming (SDK)

331

4.3.85 is_SetGainBoost

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetGainBoost (HIDS hCam, INT mode)

Description

In some cameras, is_SetGainBoost() enables an additional analog hardware gain boost feature on the
sensor.

Input parameters

hCam Camera handle

mode

IS_GET_GAINBOOST Returns the current state of the gain boost function.

IS_SET_GAINBOOST_ON Enables the gain boost function.

IS_SET_GAINBOOST_OFF Disables the gain boost function.

IS_GET_SUPPORTED_GAINBOOST Indicates whether the camera supports a gain boost
feature or not.

Return values

Current setting when used together with
IS_GET_GAINBOOST

Returns IS_SET_GAINBOOST_ON if the function is
enabled, otherwise it returns
IS_SET_GAINBOOST_OFF.

Current setting when used together with
IS_GET_SUPPORTED_GAINBOOST

Returns IS_SET_GAINBOOST_ON if the function is
supported, otherwise it returns
IS_SET_GAINBOOST_OFF.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_SetHardwareGain()

is_SetHWGainFactor()

is_SetAutoParameter()

333

335

303

© 2013 Thorlabs GmbH332

DCx Cameras

4.3.86 is_SetGamma

USB 2.0

USB 3.0

GigE

USB 2.0

USB 3.0

GigE

Syntax

INT is_SetGamma (HIDS hCam, INT nGamma)

Description

is_SetGamma() enables digital gamma correction which applies a gamma characteristic to the image. When
hardware color conversion is used on GigE uEye HE cameras the gamma correction is performed in the camera
hardware as well. When the color conversion is performed in the PC (software conversion) the gamma correction is
performed in software.

Notes

1. When the color format is set to Raw Bayer the gamma correction can not be used.

2. Typical values for gamma range between 1.6 and 2.2.

Input parameters

hCam Camera handle

nGamma Gamma value to be set, multiplied by 100
(Range: 1…1000.
Default = 100, corresponds to a gamma value of 1.0)

IS_GET_GAMMA Returns the current setting.

Return values

When used with
IS_GET_GAMMA

Current setting

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

See also:

Basics: Characteristics and LUT

Basics: Color filter (Bayer filter)

Programming: is_SetColorConverter()

39

26

315

© 2013 Thorlabs GmbH

4 Programming (SDK)

333

4.3.87 is_SetHardwareGain

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetHardwareGain (HIDS hCam, INT nMaster, INT nRed, INT nGreen, INT nBlue)

Description

is_SetHardwareGain() controls the sensor gain channels. These can be set between 0 % and 100 %
independently of of each other. The actual gain factor obtained for the value 100 % depends on the sensor and is
specified in Camera and sensor data chapter.

You can use the is_GetSensorInfo() function to query the available gain controls.

Notes

1. Sensor Gain

A signal gain will also result in a noise gain. High gain settings are therefore not recommended.

We suggest the following gain settings:

1. Enable the gain boost function is_SetGainBoost() .

2. If required, adjust the gain setting with is_SetHardwareGain()

New gain settings might only become effective when the next image is captured. This depends on the time when
the gain settings are changed.

2. Linearity of Sensor Gain

On DCx Cameras, you can set the gain factor in increments from 0 to 100. These increments are not graduated
linearly throughout the range due to the sensor. The increments will typically be greater in the upper range than in
the lower range.

The maximum gain factor settings also vary from sensor to sensor.

3. Default Settings for RGB gains

The default setting values for the red, green and blue channel gain factors depend on the color correction matrix
that has been set. If you select a different color correction matrix, the returned default values might change (see
also is_SetColorCorrection()).

Input parameters

hCam Camera handle

nMaster Sets the overall gain factor (0...100).

IS_IGNORE_PARAMETER The master gain factor will not be changed.

IS_GET_MASTER_GAIN Returns the master gain factor.

IS_GET_RED_GAIN Returns the red channel gain factor.

IS_GET_GREEN_GAIN Returns the green channel gain factor.

IS_GET_BLUE_GAIN Returns the blue channel gain factor.

IS_GET_DEFAULT_MASTER Returns the default master gain factor.

IS_GET_DEFAULT_RED Returns the default red channel gain factor.

IS_GET_DEFAULT_GREEN Returns the default green channel gain factor.

IS_GET_DEFAULT_BLUE Returns the default blue channel gain factor.

IS_SET_ENABLE_AUTO_GAIN Enables the auto gain functionality (see also
is_SetAutoParameter()). You can disable the
auto gain functionality by setting a value for nMaster.

nRed Sets the red channel gain factor (0...100).

IS_IGNORE_PARAMETER The red channel gain factor will not be changed.

nGreen Sets the green channel gain factor (0...100).

IS_IGNORE_PARAMETER The green channel gain factor will not be changed.

460

251

331

317

303

© 2013 Thorlabs GmbH334

DCx Cameras

hCam Camera handle

nBlue Sets the blue channel gain factor (0...100).

IS_IGNORE_PARAMETER The blue channel gain factor will not be changed.

Return values

When used with
IS_GET_MASTER_GAIN
IS_GET_RED_GAIN
IS_GET_GREEN_GAIN
IS_GET_BLUE_GAIN

Current setting

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver has been
loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no camera
connected or initialization error).

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match the current
camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the versions of
the uc480_api.dll (API) and the driver file (uc480_usb.sys) do
not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could not be
terminated within the allowable period.

Related functions

is_SetHWGainFactor()

is_GetSensorInfo()

is_SetGainBoost()

is_SetAutoParameter()

335

251

331

303

© 2013 Thorlabs GmbH

4 Programming (SDK)

335

4.3.88 is_SetHWGainFactor

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetHWGainFactor (HIDS hCam, INT nMode, INT nFactor)

Description

is_SetHWGainFactor() uses gain factors to control sensor gain channels. These channels can be set
independently of each other. The is_SetHardwareGain() does not use factors for setting the gain channels,
but standardized values between 0 and 100. The actual gain factor is sensor-dependent and can be found in
Camera and sensor data chapter.

You can use the is_GetSensorInfo() function to query the available gain controls.

Depending on the time when the gain settings are changed, these changes might only become effective when the
next image is captured.

Input parameters

hCam Camera handle

nMode

IS_GET_MASTER_GAIN_FACTOR Returns the master gain factor.

IS_GET_RED_GAIN_FACTOR Returns the red channel gain factor.

IS_GET_GREEN_GAIN_FACTOR Returns the green channel gain factor.

IS_GET_BLUE_GAIN_FACTOR Returns the blue channel gain factor.

IS_SET_MASTER_GAIN_FACTOR Sets the master gain factor.

IS_SET_RED_GAIN_FACTOR Sets the red channel gain factor.

IS_SET_GREEN_GAIN_FACTOR Sets the green channel gain factor.

IS_SET_BLUE_GAIN_FACTOR Sets the blue channel gain factor.

IS_GET_DEFAULT_MASTER_GAIN_FACTOR Returns the default master gain factor.

IS_GET_DEFAULT_RED_GAIN_FACTOR Returns the default red channel gain factor.

IS_GET_DEFAULT_GREEN_GAIN_FACTOR Returns the default green channel gain factor.

IS_GET_DEFAULT_BLUE_GAIN_FACTOR Returns the default blue channel gain factor.

IS_INQUIRE_MASTER_GAIN_FACTOR Converts the index value for the master gain factor.

IS_INQUIRE_RED_GAIN_FACTOR Converts the index value for the red channel gain factor.

IS_INQUIRE_GREEN_GAIN_FACTOR Converts the index value for the green channel gain
factor.

IS_INQUIRE_BLUE_GAIN_FACTOR Converts the index value for the blue channel gain
factor.

nFactor Gain value (100 = gain factor 1, i. e. no effect)

For converting a gain value from the is_SetHardwareGain() function, you can set the nMode parameter to
one of the IS_INQUIRE_x_FACTOR values. In this case, the value range for nFactor is between 0 and 100.

To set the gain using IS_SET_..._GAIN_FACTOR, you must set the nFactor parameter to an integer value in
the range from 100 to the maximum value. By calling IS_INQUIRE_x_FACTOR and specifying the value 100 for
nFactor, you can query the maximum value. A gain value of 100 means no gain, a gain value of 200 means gain
to the double level (factor 2), etc.

Return values

When used with
IS_GET_MASTER_GAIN_FACTOR
IS_GET_RED_GAIN_FACTOR
IS_GET_GREEN_GAIN_FACTOR

Current setting

333

460

251

333

© 2013 Thorlabs GmbH336

DCx Cameras

IS_GET_BLUE_GAIN_FACTOR

When used with
IS_SET_MASTER_GAIN_FACTOR
IS_SET_RED_GAIN_FACTOR
IS_SET_GREEN_GAIN_FACTOR
IS_SET_BLUE_GAIN_FACTOR

Defined setting

When used with
IS_GET_DEFAULT_MASTER_GAIN_FACTOR
IS_GET_DEFAULT_RED_GAIN_FACTOR
IS_GET_DEFAULT_GREEN_GAIN_FACTOR
IS_GET_DEFAULT_BLUE_GAIN_FACTOR

Default setting

When used with
IS_INQUIRE_MASTER_GAIN_FACTOR
IS_INQUIRE_RED_GAIN_FACTOR
IS_INQUIRE_GREEN_GAIN_FACTOR
IS_INQUIRE_BLUE_GAIN_FACTOR

Converted gain index

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_SetHardwareGain()

is_SetGainBoost()

is_SetAutoParameter()

is_GetSensorInfo()

Example

//Set master gain factor to 3.57:
INT ret = is_SetHWGainFactor (hCam, IS_SET_MASTER_GAIN_FACTOR, 357);
//ret has the value 363 for the UI-1460-C

//Query the maximum gain factor for the red channel:
ret = is_SetHWGainFactor (hCam, IS_INQUIRE_RED_GAIN_FACTOR, 100);
//ret has the value 725 for the UI-1460-C

333

331

303

251

© 2013 Thorlabs GmbH

4 Programming (SDK)

337

4.3.89 is_SetImageMem

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetImageMem (HIDS hCam, char* pcImgMem, INT id)

Description

is_SetImageMem() makes the specified image memory the active memory. Only an active image memory can
receive image data. When you call is_FreezeVideo() , the captured image is stored in the image buffer
designated by pcImgMem and id. For pcImgMem, you must pass a pointer which was created by
is_AllocImageMem() , passing any other pointer will result in an error message. You may pass the same
pointer multiple times.

Notes

In the Direct3D or OpenGL modes, there is no need to set an image memory.

If you want the application to be compatible with the FALCON SDK, make sure to call is_SetImageSize()
 after is_SetImageMem().

Input parameters

hCam Camera handle

pcImgMem Pointer to the starting position in the memory.

id ID of this memory.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_AllocImageMem()

is_FreeImageMem()

is_AddToSequence()

is_SetAllocatedImageMem()

is_GetColorDepth()

is_GetImageMem()

is_GetImageMemPitch()

223

157

438

157

222

156

301

237

247

248

© 2013 Thorlabs GmbH338

DCx Cameras

4.3.90 is_SetOptimalCameraTiming

USB 2.0

USB 3.0
–

Syntax

INT is_SetOptimalCameraTiming (HIDS hCam, INT Mode, INT Timeout,
 INT* pMaxPxlClk, double* pMaxFrameRate)

Description

Using is_SetOptimalCameraTiming(), you can determine the highest possible pixel clock frequency for the
current configuration. This function sets the pixel clock for which no transfer errors will occur during the Timeout
period. Moreover, it returns the highest frame rate available for this pixel clock frequency.

is_SetOptimalCameraTiming() can only be executed in free-run mode (is_CaptureVideo()). If the
return value is IS_SUCCESS, no clock setting will be made.

Attention

The function should be executed in a separate thread and run in the background to allow for the computational
load caused by additional color conversions, etc. Otherwise, it will not be able to return the optimum values.

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After
executing is_SetOptimalCameraTiming(), calling the following functions is recommended in order to keep
the defined camera settings:

is_SetFrameRate()

is_Exposure()

If you are using the DCx Camera's flash function: is_IO()

Input parameters

hCam Camera handle

Mode

IS_BEST_PCLK_RUN_ONCE The function makes one attempt to determine the
optimum pixel clock and returns immediately.

Timeout
[4000...20000]

Sets the period (in milliseconds) during which no
transfer error may occur. The adjustable range is
between 4 and 20 seconds. The higher the value you set
for this parameter, the more stable the determined pixel
clock value will be. This, in turn, increases the runtime of
the function correspondingly.

pMaxPxlClk Returns the maximum pixel clock frequency (in MHz).

pMaxFrameRate Returns the maximum frame rate (in fps).

Return values

IS_AUTO_EXPOSURE_RUNNING This setting cannot be changed while automatic exposure time
control is enabled.

IS_INVALID_IMAGE_SIZE Invalid image size

This value is returned if e.g. the function is called with active binning
or subsampling

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_TRIGGER_ACTIVATED The function cannot be used because the camera is waiting for a
trigger signal.

177

329

216

280

© 2013 Thorlabs GmbH

4 Programming (SDK)

339

Related functions

is_PixelClock()

is_SetFrameRate()

is_SetAutoParameter()

is_CaptureVideo()

294

329

303

177

© 2013 Thorlabs GmbH340

DCx Cameras

4.3.91 is_SetRopEffect

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetRopEffect (HIDS hCam, INT effect, INT param, INT reserved)

Description

is_SetRopEffect() enables functions for real-time image geometry modification (Rop = raster operation).

Input parameters

hCam Camera handle

effect

IS_SET_ROP_MIRROR_UPDOWN Mirrors the image along the horizontal axis.

IS_SET_ROP_MIRROR_LEFTRIGHT Mirrors the image along the vertical axis.

Depending on the sensor, this operation is performed in
the camera or in the PC software.

IS_GET_ROP_EFFECT Returns the current settings.

param Turns the Rop effect on/off.

0 = Turn off

1 = Turn on

reserved Reserved. 0 must be passed.

Return values

When used with
IS_GET_ROP_EFFECT

Current setting

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAPTURE_MODE The function can not be executed in the current camera
operating mode (free run, trigger or standby).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

© 2013 Thorlabs GmbH

4 Programming (SDK)

341

Related functions

is_SetBinning()

is_SetSubSampling()

is_AOI()

310

347

159

© 2013 Thorlabs GmbH342

DCx Cameras

4.3.92 is_SetSaturation

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetSaturation (HIDS hCam, INT ChromU, INT ChromV)

Description

Using is_SetSaturation(), you can set the software color saturation.

Note

In the YUV format, color information (i.e. the color difference signals) is provided by the U and V channels. In the U
channel, this information results from the difference between the blue level and Y (luminance), in the V channel
from the difference between the red level and Y.

For use in other color formats than YUV, U and V are converted using a driver matrix.

Input parameters

hCam Camera handle

ChromU U saturation: value multiplied by 100.

Range: [IS_MIN_SATURATION …
IS_MAX_SATURATION]

IS_GET_SATURATION_U Returns the current value for the U saturation.

ChromV V saturation: value multiplied by 100.

Range: [IS_MIN_SATURATION …
IS_MAX_SATURATION]

IS_GET_SATURATION_V Returns the current value for the V saturation.

Return values

When used with
IS_GET_SATURATION_U
IS_GET_SATURATION_V

Current setting

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_SetColorMode()

is_SetColorCorrection()

is_SetColorConverter()

319

317

315

© 2013 Thorlabs GmbH

4 Programming (SDK)

343

4.3.93 is_SetSensorScaler

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetSensorScaler (HIDS hCam, UINT nMode, double dblFactor)

Description

is_SetSensorScaler() enables internal image scaling for some sensors. This allows to reduce the image
resolution by adjustable factors. Thus, the amount of data from high resolution sensors can be reduced.

Note

Internal image scaling is only supported DCC1240x and DCC3240x series cameras.

The use of the internal scaler has no effect on the attainable frame rate.

Input parameters

hCam Camera handle

nMode: Function mode

IS_ENABLE_SENSOR_SCALER Enable image scaling

IS_ENABLE_SENSOR_SCALER |
IS_ENABLE_ANTI_ALIASING

Enable image scaling with smoothed edges (anti-
aliasing effect)

dblFactor Scaling factor

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver has been
loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no camera
connected or initialization error).

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match the current
camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the versions of
the uc480_api.dll (API) and the driver file (uc480_usb.sys) do
not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could not be
terminated within the allowable period.

Related functions

is_GetSensorScalerInfo()

461

252

© 2013 Thorlabs GmbH344

DCx Cameras

Example

SENSORSCALERINFO Info;
INT nRet;
double dblNewFactor;

// Query information on image scaling
nRet = is_GetSensorScalerInfo (hCam, &Info,

sizeof(Info));

// Enable scaling with anti aliasing
dblNewFactor = Info.dblMinFactor + Info.dblFactorIncrement;
nRet = is_SetSensorScaler (hCam, IS_ENABLE_SENSOR_SCALER |

IS_ENABLE_ANTI_ALIASING, dblNewFactor);

© 2013 Thorlabs GmbH

4 Programming (SDK)

345

4.3.94 is_SetSensorTestImage

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetSensorTestImage (HIDS hCam, INT TestImage, INT Param)

Description

is_SetSensorTestImage() enables a test image function in the sensor. You can select different test images.
The test images supported by a particular camera can be queried using the is_GetSupportedTestImages()

 function. For some test images, the Param parameter provides additional options. If the test image does not
support additional parameters, Param will be ignored.

Attention

Manually changing the pixel clock will disable the test image mode.

Input parameters

hCam Camera handle

TestImage The test image to be set. See also is_GetSupportedTestImages() .

Param Additional parameter for used to modify the test image. Not available for all test
images.

Return values

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_CAPTURE_RUNNING A capturing operation is in progress and must be
terminated before you can start another one.

IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to store
the image in the desired format.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_ACTIVE_IMG_MEM No active image memory available. You must set the
memory to active using the is_SetImageMem()
function or create a sequence using the
is_AddToSequence() function.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

253

253

© 2013 Thorlabs GmbH346

DCx Cameras

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

IS_TRIGGER_ACTIVATED The function cannot be used because the camera is
waiting for a trigger signal.

Related functions

is_GetSupportedTestImages()

is_GetTestImageValueRange()

253

255

© 2013 Thorlabs GmbH

4 Programming (SDK)

347

4.3.95 is_SetSubSampling

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetSubSampling (HIDS hCam, INT mode)

Description

Using is_SetSubSampling(), you can enable sub-sampling mode both in horizontal and in vertical directions.
This allows you to reduce the image size in the sub-sampling direction without scaling down the area of interest. In
order to simultaneously enable horizontal and vertical sub-sampling, the horizontal and vertical sub-sampling
parameters can by linked by a logical OR.

Some monochrome sensors are limited by their design to mere color sub-sampling. In case of fine image
structures, this can result in slight artifacts.

The adjustable sub-sampling factors of each sensor are listed in Camera and sensor data chapter.

Note

Some sensors allow a higher pixel clock setting when binning or subsampling is activated. If you set a higher pixel
clock and then reduce the binning/subsampling factors again, the driver will automatically select the highest
possible pixel clock for the new settings.

Attention

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After
executing is_SetSubSampling(), calling the following functions is recommended in order to keep the defined
camera settings:

is_SetFrameRate()

is_Exposure()

If you are using the DCx Camera's flash function: is_IO()

Input parameters

hCam Camera handle

mode

IS_SUBSAMPLING_DISABLE Disables sub-sampling.

IS_SUBSAMPLING_2X_VERTICAL Enables vertical sub-sampling with factor 2.

IS_SUBSAMPLING_3X_VERTICAL Enables vertical sub-sampling with factor 3.

IS_SUBSAMPLING_4X_VERTICAL Enables vertical sub-sampling with factor 4.

IS_SUBSAMPLING_5X_VERTICAL Enables vertical sub-sampling with factor 5.

IS_SUBSAMPLING_6X_VERTICAL Enables vertical sub-sampling with factor 6.

IS_SUBSAMPLING_8X_VERTICAL Enables vertical sub-sampling with factor 8.

IS_SUBSAMPLING_16X_VERTICAL Enables vertical sub-sampling with factor 16.

IS_SUBSAMPLING_2X_HORIZONTAL Enables horizontal sub-sampling with factor 2.

IS_SUBSAMPLING_3X_HORIZONTAL Enables horizontal sub-sampling with factor 3.

IS_SUBSAMPLING_4X_HORIZONTAL Enables horizontal sub-sampling with factor 4.

IS_SUBSAMPLING_5X_HORIZONTAL Enables horizontal sub-sampling with factor 5.

IS_SUBSAMPLING_6X_HORIZONTAL Enables horizontal sub-sampling with factor 6.

IS_SUBSAMPLING_8X_HORIZONTAL Enables horizontal sub-sampling with factor 8.

IS_SUBSAMPLING_16X_HORIZONTAL Enables horizontal sub-sampling with factor 16.

IS_GET_SUBSAMPLING Returns the current setting.

IS_GET_SUBSAMPLING_FACTOR_VERTICAL Returns the vertical sub-sampling factor

460

329

216

280

© 2013 Thorlabs GmbH348

DCx Cameras

hCam Camera handle

IS_GET_SUBSAMPLING_FACTOR_HORIZONTAL Returns the horizontal sub-sampling factor

IS_GET_SUBSAMPLING_TYPE Indicates whether the camera uses color-proof sub-
sampling.

IS_GET_SUPPORTED_SUBSAMPLING Returns the supported sub-sampling modes.

Return values

When used with
IS_GET_SUBSAMPLING

Current setting: Returns an ORing of the
defined constants from ueye.h, e.g.
IS_SUBSAMPLING_2X_HORIZONTAL

When used with
IS_GET_SUBSAMPLING_FACTOR_VERTICAL
IS_GET_SUBSAMPLING_FACTOR_HORIZONTAL

Current setting: Returns the current factor as
integer value (2, 3, 4, 5, 6, 8, 16)

When used with
IS_GET_SUBSAMPLING_TYPE

Current setting: Returns
IS_SUBSAMPLING_COLOR if the camera uses
color-proof sub-sampling, else
IS_SUBSAMPLING_MONO

In Verbindung mit
IS_GET_SUPPORTED_SUBSAMPLING

Returns the supported sub-sampling modes
linked by logical ORs

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the
sequence and cannot be added again.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because
no driver has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera
failed (no camera connected or initialization
error).

IS_CAPTURE_RUNNING A capturing operation is in progress and must
be terminated before you can start another one.

IS_DR_CANNOT_CREATE_SURFACE The image surface or overlay surface could not
be created.

IS_DR_CANNOT_CREATE_TEXTURE The texture could not be created.

IS_DR_CANNOT_CREATE_VERTEX_BUFFER The vertex buffer could not be created.

IS_DR_DEVICE_OUT_OF_MEMORY Not enough graphics memory available.

IS_DR_LIBRARY_NOT_FOUND The DirectRenderer library could not be found.

IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to
store the image in the desired format.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not
match the current camera model.

IS_INVALID_CAPTURE_MODE The function can not be executed in the current
camera operating mode (free run, trigger or
standby).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_MODE Camera is in standby mode, function not
allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the
valid range or is not supported for this sensor or
is not available in this mode.

IS_INVALID_PIXEL_CLOCK This setting is not available for the currently set
pixel clock frequency.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed.
Possibly the versions of the uc480_api.dll

© 2013 Thorlabs GmbH

4 Programming (SDK)

349

(API) and the driver file (uc480_usb.sys) do
not match.

IS_NO_ACTIVE_IMG_MEM No active image memory available. You must
set the memory to active using the
is_SetImageMem() function or create a
sequence using the is_AddToSequence()
function.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration
data.

IS_NOT_SUPPORTED The camera model used here does not support
this function or setting.

IS_NULL_POINTER Invalid array

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to
the buffer is invalid.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process
could not be terminated within the allowable
period.

IS_TRIGGER_ACTIVATED The function cannot be used because the
camera is waiting for a trigger signal.

Related functions

is_SetBinning()

is_AOI()

is_ImageFormat()

is_PixelClock()

310

159

267

294

© 2013 Thorlabs GmbH350

DCx Cameras

4.3.96 is_SetTimeout

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetTimeout (HIDS hCam, UINT nMode, UINT Timeout)

Description

Using is_SetTimeout(), you can change user-defined timeout values of the uc480 API. If no user-defined
timeout is set, the default value of the uc480 API is used for the relevant timeout.

For further information, please refer to the How to proceed: Timeout values for image capture section.

Note

The user-defined timeout only applies to the specified camera at runtime of the program.

Input parameters

hCam Camera handle

nMode Selects the timeout value to be set

IS_TRIGGER_TIMEOUT Sets the timeout value for triggered image capture

Timeout Timeout value in 10 ms.

Value range [0; 4...429496729] (corresponds to 40 ms to approx.
1193 hours)

0 = use default value of the uc480 API

For 1...3, the value 4 is used.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver has been
loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no camera
connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the versions of
the uc480_api.dll (API) and the driver file (uc480_usb.sys) do
not match.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this function or
setting.

IS_SUCCESS Function executed successfully

Related functions

is_GetTimeout()

is_CaptureVideo()

is_FreezeVideo()

is_SetExternalTrigger()

Example

// Set user-defined timeout to 120 seconds
is_SetTimeout(hCam, IS_TRIGGER_TIMEOUT, 12000);

135

256

177

223

327

© 2013 Thorlabs GmbH

4 Programming (SDK)

351

4.3.97 is_SetTriggerCounter

USB 2.0 USB 2.0

Syntax

INT is_SetTriggerCounter (HIDS hCam, INT nValue)

Description

is_SetTriggerCounter() returns the number of images captured in hardware or software trigger mode.

Note

In freerun mode, the counter always returns 0 even when images were captured.

Input parameters

hCam Camera handle

nValue

IS_GET_TRIGGER_COUNTER Returns the current count for triggered image captures

Other values Resets the counter for triggered image captures

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_SetExternalTrigger()

is_CameraStatus()

327

172

© 2013 Thorlabs GmbH352

DCx Cameras

4.3.98 is_SetTriggerDelay

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetTriggerDelay (HIDS hCam, INT nTriggerDelay)

Description

Using is_SetTriggerDelay(), you can set the delay time between the arrival of a trigger signal and the start of
exposure. The trigger signal can be initiated by hardware or by software.

The delay time set here adds to the delay caused by the sensor. The delay times of each sensor are listed in
Camera and sensor data chapter.

Input parameters

hCam Camera handle

nTriggerDelay Time by which the image capture is delayed (in µs)

0 = deactivate trigger delay

IS_GET_TRIGGER_DELAY Returns the currently set delay time.

IS_GET_MIN_TRIGGER_DELAY Returns the minimum adjustable value.

IS_GET_MAX_TRIGGER_DELAY Returns the maximum adjustable value.

IS_GET_TRIGGER_DELAY_GRANULARITY Returns the resolution of the adjustable delay time.

Return values

When used with
IS_GET_TRIGGER_DELAY

Current setting

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_IO()

is_SetExternalTrigger()

460

280

327

© 2013 Thorlabs GmbH

4 Programming (SDK)

353

4.3.99 is_StopLiveVideo

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_StopLiveVideo (HIDS hCam, INT Wait)

Description

is_StopLiveVideo() stops live mode or cancels a hardware triggered image capture in case the exposure has
not yet started.

Input parameters

hCam Camera handle

Wait

IS_WAIT The function waits until the image save is complete.

IS_DONT_WAIT The function returns immediately. Digitizing the image is
completed in the background.

IS_FORCE_VIDEO_STOP Digitizing is stopped immediately.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

Related functions

is_FreezeVideo()

is_CaptureVideo()

is_SetDisplayMode()

223

177

322

© 2013 Thorlabs GmbH354

DCx Cameras

4.3.100 is_UnlockSeqBuf

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_UnlockSeqBuf (HIDS hCam, INT nNum, char* pcMem)

Description

Using is_UnlockSeqBuf(), you unlock a previously locked image memory in order to make it available again
for storing captured images. The image memory is re-inserted at its previous position in the sequence list.

Input parameters

hCam Camera handle

nNum Number of the image memory to unlock.
When you pass IS_IGNORE_PARAMETER, the image memory is only identified
by its starting address.

nNum identifies the position in the sequence list, not the memory ID assigned
with is_AllocImageMem() .

pcMem Starting address of the image memory

Return values

IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_LockSeqBuf()

is_WaitForNextImage()

157

289

356

© 2013 Thorlabs GmbH

4 Programming (SDK)

355

4.3.101 is_WaitEvent

- USB 2.0

USB 3.0

Syntax

INT is_WaitEvent (HIDS hCam, INT which, INT nTimeout)

Description

is_WaitEvent() allows waiting for uc480 events. The function indicates successful execution when the event
has occurred within the specified timeout.

Input parameters

hCam Camera handle

which ID of the event (see is_EnableEvent())

nTimeout Time (in ms) that the function will wait for an event to
occur.

Using the constant INFINITE you can set the time for
the timeout to infinity.

Return values

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

That means the specified timeout expired without the
event having occurred.

Related functions

is_EnableEvent()

is_DisableEvent()

Example

//Activate and initialize FRAME event
is_EnableEvent(hCam, IS_SET_EVENT_FRAME);

//Start image capture and wait 1000 ms for event to occur
is_FreezeVideo(hCam, IS_DONT_WAIT);
INT nRet = is_WaitEvent(hCam, IS_SET_EVENT_FRAME, 1000);
if (nRet == IS_TIMED_OUT)
{
 /* wait timed out */
}
else if (nRet == IS_SUCCESS)
{
 /* event signalled */
}
is_DisableEvent(hCam, IS_SET_EVENT_FRAME);

209

209

205

© 2013 Thorlabs GmbH356

DCx Cameras

4.3.102 is_WaitForNextImage

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_WaitForNextImage(HIDS hCam, UINT timeout, char** ppcMem, INT* imageID)

Description

is_WaitForNextImage() returns the pointer and sequence ID of the first (i.e. oldest) image in a memory
sequence. The queue mode has to be enabled for the memory sequence (see is_InitImageQueue()). If the
sequence does not contain images, is_WaitForNextImage() waits until a new image arrives or until the
specified time has elapsed.

Note

Note that also image capture errors are added to the ImageQueue like images. If a call of
is_WaitForNextImage() returns the IS_CAPTURE_STATUS return value then you can check by a new call of
the function, if any further images were enqueued into the ImageQueue after the error.

Attention

Image memories in a sequence with queue mode are automatically locked. The image memories will have to be
unlocked with is_UnlockSeqBuf() in order to be re-used in the sequence.

Input parameters

hCam Camera handle

timeout Timeout in ms. Range 0…232-1

If no images are in the sequence and no image arrives during the timeout, the
function returns IS_TIMED_OUT.

ppcMem Pointer to a variable which will receive the address of the last image in the
sequence.

imageID Pointer to a variable which will receive the sequence ID of the oldest image in
the sequence.

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

IS_CAPTURE_STATUS A transfer error occurred or no image memory was
available for saving.

The parameter IS_CAPTURE_STATUS replaces the
previous parameter IS_TRANSFER_FAILED.

278

354

© 2013 Thorlabs GmbH

4 Programming (SDK)

357

The parameter IS_TRANSFER_FAILED was moved into
the new header file uc480_deprecated.h, which
contains all obsolete function definitions and constants.
If necessary the header file uc480_deprecated.h can
be included in addition to the header file uc480.h.

Related functions

is_InitImageQueue()

is_ExitImageQueue()

is_UnlockSeqBuf()

See also:

How to proceed: Image memory sequences

How to proceed: Allocating image memory

Transfer error: uc480 Viewer Image infos

Transfer error: is_GetImageInfo()

278

215

354

132

130

90

244

© 2013 Thorlabs GmbH358

DCx Cameras

4.3.103 is_WriteEEPROM

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_WriteEEPROM (HIDS hCam, INT Adr, char* pcString, INT Count)

Description

Using is_WriteEEPROM(), you can write data to the EEPROM of the camera. Besides the hard-coded factory
information, the EEPROM of the DCx Camera can hold 64 bytes of user data.

Input parameters

hCam Camera handle

Adr Starting address for data writes (0...63)

pcString Pointer to the string containing the data to be written

Count Number of characters to be written (1...64)

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

Related functions

is_ReadEEPROM() 296

© 2013 Thorlabs GmbH

4 Programming (SDK)

359

4.4 AVI Function Descriptions
The functions of the uc480_tools.dll enable you to save images captured with the DCx Camera as sequences
to an AVI file. The How to proceed: Capturing AVIs chapter shows the command sequence for capturing an AVI
video.

Notes

Video Resolution

If the width or height of the video resolution is greater than 2048 pixels, some media players may not be able to
play the video.

Video Compression

To reduce the file size, the single frames are stored in the AVI container using an adjustable JPEG compression. It
is possible to extract single frames from the AVI file.

4.4.1 isavi_AddFrame

USB 2.0

USB 3.0
-

Syntax

INT isavi_AddFrame (INT nAviID, char* pcImageMem)

Description

isavi_AddFrame() adds a new frame to an AVI sequence.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function

pcImageMem Pointer to the memory containing the image.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_COMPRESS The last image compression failed.

IS_AVI_ERR_COMPRESSION_RUN The current image could not be processed since
compression is still in progress.

IS_AVI_ERR_INVALID_FILE The file has no valid AVI format.

Related functions

isavi_InitAVI()

149

369

362

369

© 2013 Thorlabs GmbH360

DCx Cameras

4.4.2 isavi_CloseAVI

USB 2.0

USB 3.0

-

Syntax

INT isavi_CloseAVI (INT nAviID)

Description

isavi_CloseAVI() closes an AVI file which was opened using isavi_OpenAVI() .

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

Related functions

isavi_OpenAVI()

isavi_InitAVI()

isavi_ExitAVI()

4.4.3 isavi_DisableEvent

USB 2.0

USB 3.0

-

Syntax

INT isavi_DisableEvent (INT nAviID, INT which)

Description

isavi_DisableEvent() disables the specified event. The disabled event no longer triggers an event notification
when the associated event occurs.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

which Name of the event to be disabled.

IS_AVI_SET_EVENT_FRAME_SAVED A new frame was saved to the AVI file.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_PARAMETER One of the submitted parameters is outside the valid
range.

371

369

362

371

369

362

369

362

© 2013 Thorlabs GmbH

4 Programming (SDK)

361

Related functions

isavi_EnableEvent()

4.4.4 isavi_EnableEvent

USB 2.0

USB 3.0

-

Syntax

INT isavi_EnableEvent (INT nAviID, INT which)

Description

isavi_EnableEvent() enables the specified event. The enabled event triggers an event notification when the
associated event occurs.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

which Name of the event to be enabled.

IS_AVI_SET_EVENT_FRAME_SAVED A new frame was saved to the AVI file.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_PARAMETER One of the submitted parameters is outside the valid
range.

Related functions

isavi_DisableEvent()

361

369

362

360

© 2013 Thorlabs GmbH362

DCx Cameras

4.4.5 isavi_ExitAVI

USB 2.0

USB 3.0

-

Syntax

INT isavi_ExitAVI (INT nAviID)

Description

isavi_ExitAVI() terminates and deletes the instance of the uc480 AVI interface.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_INVALID_FILE The file has no valid AVI format.

Related functions

isavi_InitAVI()

isavi_OpenAVI()

isavi_CloseAVI()

369

362

369

371

360

© 2013 Thorlabs GmbH

4 Programming (SDK)

363

4.4.6 isavi_ExitEvent

USB 2.0

USb 3.0

-

Syntax

INT isavi_ExitEvent (INT nAviID, INT which)

Description

isavi_ExitEvent() deletes the specified event. The deleted event no longer occurs and needs to be re-created
using isavi_InitEvent() before it can be enabled and used.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

which Name of the event to be deleted.

IS_AVI_SET_EVENT_FRAME_SAVED A new frame was saved to the AVI file.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_PARAMETER One of the submitted parameters is outside the valid
range.

Related functions

isavi_InitEvent()

isavi_EnableEvent()

isavi_DisableEvent()

370

369

362

370

361

360

© 2013 Thorlabs GmbH364

DCx Cameras

4.4.7 isavi_GetAVIFileName

USB 2.0

USB 3.0

-

Syntax

INT isavi_GetAVIFileName (INT nAviID, char* strName)

Description

Using isavi_GetAVIFileName(), you can read out the filename of the current AVI file. This function is helpful if
an AVI file was opened with the isavi_OpenAVI() function and a Null parameter was specified.

Note

The functions isavi_OpenAVI() and isavi_GetAVIFileName() do not support UNICODE strings. For this
purpose you use the functions isavi_OpenAVIW() and isavi_GetAVIFileNameW() .

If the AVI file was created using a UNICODE string, only the isavi_GetAVIFileNameW() function can return the
right file string.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

strName Pointer to the memory location where the filename is written to. The allocated
memory must be large enough to accommodate the full file path.

NULL When NULL is passed the function returns the length of the filename.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

Related functions

isavi_GetAVISize()

isavi_OpenAVI()

371

371

372 365

369

362

366

371

© 2013 Thorlabs GmbH

4 Programming (SDK)

365

4.4.8 isavi_GetAVIFileNameW

USB 2.0

USB 3.0

-

Syntax

INT isavi_GetAVIFileNameW (INT nAviID, wchar_t* strName)

Description

Using isavi_GetAVIFileNameW(), you can read out the filename of the current AVI file as UNICODE string.
This function is helpful if an AVI file was opened with the isavi_OpenAVIW() function and a NULL parameter
was specified.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

strName Pointer to the memory location where the filename is written to. The allocated
memory must be large enough to accommodate the full file path as UNICODE
string.

NULL When NULL is passed the function returns the length of the filename.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

Related functions

isavi_GetAVISize()

isavi_OpenAVIW()

372

369

362

366

372

© 2013 Thorlabs GmbH366

DCx Cameras

4.4.9 isavi_GetAVISize

USB 2.0

USB 3.0

-

Syntax

INT isavi_GetAVISize (INT nAviID, float* size)

Description

Use isavi_GetAVISize() to retrieve the size of the frame sequence saved to the current AVI file.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function

size The size in kBytes

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

Related functions

isavi_GetAVIFileName()

369

362

364

© 2013 Thorlabs GmbH

4 Programming (SDK)

367

4.4.10 isavi_GetnCompressedFrames

USB 2.0

USB 3.0

-

Syntax

INT isavi_GetnCompressedFrames (INT nAviID, unsigned long* nFrames)

Description

Using isavi_GetnCompressedFrames(), you can read out the number of frames saved to the current AVI file.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

nFrames The number of frames

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

Related functions

isavi_GetnLostFrames()

isavi_ResetFrameCounters()

369

362

368

373

© 2013 Thorlabs GmbH368

DCx Cameras

4.4.11 isavi_GetnLostFrames

USB 2.0

USB 3.0

-

Syntax

INT isavi_GetnLostFrames (INT nAviID, unsigned long* nFrames)

Description

Using isavi_GetnLostFrames(), you can read out the number of frames that have been discarded. A frame
will be discarded if it cannot be processed because a compression operation in still in progress.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

nFrames The number of frames

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

Related functions

isavi_GetnCompressedFrames()

isavi_ResetFrameCounters()

369

362

367

373

© 2013 Thorlabs GmbH

4 Programming (SDK)

369

4.4.12 isavi_InitAVI

USB 2.0

USB 3.0

-

Syntax

INT isavi_InitAVI (INT* pnAviID, HIDS hCam)

Description

isavi_InitAVI() initializes an instance of the uc480 AVI interface. Multiple instances can be created
simultaneously.

Input parameters

pnAviID Pointer. Returns the instance ID which is needed for calling the
other uc480 AVI functions.

hCam Handle of a selected or initialized DCx camera.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_PARAMETER One of the submitted parameters is outside the valid
range.

IS_AVI_ERR_NO_CODEC_AVAIL The maximum number of instances allowed in this
system has been reached. It is not possible to create
another instance.

IS_AVI_ERR_INVALID_UEYE No DCx camera was found.

Related functions

isavi_ExitAVI()

isavi_OpenAVI()

isavi_CloseAVI()

362

371

360

© 2013 Thorlabs GmbH370

DCx Cameras

4.4.13 isavi_InitEvent

USB 2.0

USB 3.0

-

Syntax

INT isavi_InitEvent (INT nAviID, INT which)

Description

isavi_InitEvent() creates the specified event. This includes registering the event object in the uc480 AVI
interface and creating an event handler. Before you can use a new event, you must enable it by calling
isavi_EnableEvent() .

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

which Name of the event to be created.

IS_AVI_SET_EVENT_FRAME_SAVED A new frame was saved to the AVI file.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_EVENT_FAILED The event could not be initialized. The Windows
SetEvent function failed.

IS_AVI_ERR_PARAMETER One of the submitted parameters is outside the valid
range.

Related functions

isavi_ExitEvent()

isavi_EnableEvent()

isavi_DisableEvent()

Example

Create and enable an event object for the "Frame saved" event:

HANDLE hEvent = CreateEvent(NULL, TRUE, FALSE, "");
if (hEvent != NULL)
{
 isavi_InitEvent(AviDest, hEvent, IS_AVI_SET_EVENT_FRAME_SAVED);
 isavi_EnableEvent(AviDest, IS_AVI_SET_EVENT_FRAME_SAVED);

 if (WaitForSingleObject(hEvent, 1000) == WAIT_OBJECT_0)
 {
 //Frame was captured successfully...
 }
 isavi_DisableEvent(AviDest, IS_AVI_SET_EVENT_FRAME_SAVED);
 isavi_ExitEvent(AviDest, IS_AVI_SET_EVENT_FRAME_SAVED);
}

361

369

362

363

361

360

© 2013 Thorlabs GmbH

4 Programming (SDK)

371

4.4.14 isavi_OpenAVI

USB 2.0

USB 3.0

-

Syntax

INT isavi_OpenAVI (INT nAviID, const char* strFileName)

Description

isavi_OpenAVI() opens a new or existing AVI file.

Note

The functions isavi_OpenAVI() and isavi_GetAVIFileName() do not support UNICODE strings. For this
purpose you use the functions isavi_OpenAVIW() and isavi_GetAVIFileNameW() .

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

pFileName Pointer to the name to be assigned to the AVI file. If NULL is
passed, the "Open File" dialog is displayed.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_CAPTURE_RUNNING Another capturing operation is in progress or an AVI file is
still open.

IS_AVI_ERR_INVALID_FILE The file has no valid AVI format.

IS_AVI_ERR_NEW_FAILED No memory could be allocated for the AVI file.

IS_AVI_ERR_CREATESTREAM No AVI stream could be created.

Related functions

isavi_GetAVIFileName()

isavi_CloseAVI()

isavi_InitAVI()

isavi_ExitAVI()

371

372 365

369

362

364

360

369

362

© 2013 Thorlabs GmbH372

DCx Cameras

4.4.15 isavi_OpenAVIW

USB 2.0

USB 3.0

-

Syntax

INT isavi_OpenAVIW (INT nAviID, const wchar_t* strFileName)

Description

isavi_OpenAVIW() opens a new or existing AVI file.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

pFileName Pointer to the name to be assigned to the AVI file. The file name is
passed as UNICODE string. If NULL is passed, the "Open File"
dialog is displayed.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_CAPTURE_RUNNING Another capturing operation is in progress or an AVI file is
still open.

IS_AVI_ERR_INVALID_FILE The file has no valid AVI format.

IS_AVI_ERR_NEW_FAILED No memory could be allocated for the AVI file.

IS_AVI_ERR_CREATESTREAM No AVI stream could be created.

Related functions

isavi_GetAVIFileNameW()

isavi_CloseAVI()

isavi_InitAVI()

isavi_ExitAVI()

369

362

365

360

369

362

© 2013 Thorlabs GmbH

4 Programming (SDK)

373

4.4.16 isavi_ResetFrameCounters

USB 2.0

USB 3.0

-

Syntax

INT isavi_ResetFrameCounters (INT nAviID)

Description

isavi_ResetFrameCounters() resets the counters for saved and discarded images.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

Related functions

isavi_GetnCompressedFrames()

isavi_GetnLostFrames()

369

362

367

368

© 2013 Thorlabs GmbH374

DCx Cameras

4.4.17 isavi_SetFrameRate

USB 2.0

USB 3.0

-

Syntax

INT isavi_SetFrameRate (INT nAviID, double fr)

Description

isavi_SetFrameRate() sets the frame rate for AVI capturing. You can set the frame rate after opening the AVI
file. This value does not have to be equal to the frame rate set for the DCx camera.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

fr The frame rate to be set. Default = 25.0

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_WRITE_INFO The AVI file could not be modified.

IS_AVI_ERR_INVALID_FILE The file has no valid AVI format.

Related functions

isavi_SetImageQuality()

isavi_SetImageSize()

369

362

375

376

© 2013 Thorlabs GmbH

4 Programming (SDK)

375

4.4.18 isavi_SetImageQuality

USB 2.0

USB 3.0

-

Syntax

INT isavi_SetImageQuality (INT nAviID, INT q)

Description

isavi_SetImageQuality() indicates the quality for the frames to be compressed. You can change the image
quality at any time; it then applies to all subsequent frames. For compression, the system uses the JPEG algorithm.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

q Image quality [1 = lowest ... 100 = highest]

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_INVALID_VALUE The q parameter is outside the range of 1…100.

IS_AVI_ERR_INVALID_FILE The file has no valid AVI format.

Related functions

isavi_SetFrameRate()

isavi_SetImageSize()

369

362

374

376

© 2013 Thorlabs GmbH376

DCx Cameras

4.4.19 isavi_SetImageSize

USB 2.0

USB 3.0

-

Syntax

INT isavi_SetImageSize (INT nAviID, INT cMode, INT Width, INT Height,
 INT PosX, INT PosY, INT LineOffset)

Description

isavi_SetImageSize() sets the size and position of the area of interest which will be saved to the AVI file. Only
the defined area of interest of each frame will be saved. In addition, this function specifies the input color format of
the frames. You define these settings only once for the entire video.

Note

The supported input color formats are RGB32, RGB24, Y8 and raw Bayer. The output file will always be in RGB24
format, regardless of the input data format. For further information on the structure of the different color formats,
see the Appendix: Color and memory formats section.

Attention

When an area of interest is used, the width (Width) and height (Height) of the AOI must be at least 16 pixel. The
AOI width must be a multiple of 8.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

cMode Color format of the input frames captured by the DCx Camera.

Width Width of the entire frame or of the area of interest.

Height Height of the entire frame or of the area of interest.

PosX X position (offset) of the area of interest.

PosY Y position (offset) of the area of interest.

LineOffset Line increment.

The line increment is the difference between the width of the entire
frame (in pixel) and the area of interest (in pixel).

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_INVALID_FILE The file has no valid AVI format.

IS_AVI_ERR_CAPTURE_RUNNING Another capturing operation is in progress or an AVI file is
still open.

IS_AVI_ERR_ALLOC_MEMORY No memory could be allocated.

IS_AVI_ERR_INVALID_CM The submitted color mode is not supported for AVI
capturing.

IS_AVI_ERR_INVALID_SIZE The submitted size is invalid.

IS_AVI_ERR_INVALID_POSITION The submitted position is invalid.

Related functions

isavi_SetFrameRate()

isavi_SetImageQuality()

502

369

362

374

375

© 2013 Thorlabs GmbH

4 Programming (SDK)

377

Example

// Query image buffer geometry
int nWidth, nWidth, nBits, nPitch;
is_InquireImageMem (hCam, pLast, nImageID,
 &nWidth, &nHeight,
 &nBits, &nPitch);
INT nOffsetX = is_SetImagePos (hCam, IS_GET_IMAGE_POS_X_ABS, 0);
INT nOffsetY = is_SetImagePos (hCam, IS_GET_IMAGE_POS_Y_ABS, 0);

// Derive pixel pitch from buffer byte pitch
INT nPitchPx=0;
nPitchPx = (nPitch * 8) / nBits;

INT nAviWidth = nWidth /8 * 8; // Width must be multiple of 8
INT LineOffsetPx = nPitchPx - nAviWidth ;
isavi_SetImageSize(nAviId, m_cMode,
 nAviWidth, nHeight,
 nOffsetX, nOffsetY,
 LineOffsetPx);

4.4.20 isavi_StartAVI

USB 2.0

USB 3.0

-

Syntax

INT isavi_StartAVI (INT nAviID)

Description

isavi_StartAVI() starts the image capture thread.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_INVALID_FILE The file has no valid AVI format.

IS_AVI_ERR_PLAY_RUNNING A playback is already running.

Related functions

isavi_StopAVI()

isavi_InitEvent()

isavi_ExitAVI()

369

362

378

370

362

© 2013 Thorlabs GmbH378

DCx Cameras

4.4.21 isavi_StopAVI

USB 2.0

USB 3.0

-

Syntax

INT isavi_StopAVI (INT nAviID)

Description

isavi_StopAVI() stops the image capture thread. Subsequent calls of isavi_AddFrame() will be ignored.

Input parameters

nAviID Instance ID set by the isavi_InitAVI() function.

Return values

IS_AVI_NO_ERR Function executed successfully.

IS_AVI_ERR_CAPTURE_NOT_RUNNING No capturing operation is running or no AVI file is opened.

IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found. Either the
AVI ID is invalid or the instance has already been deleted
using isavi_ExitAVI() .

IS_AVI_ERR_INVALID_FILE The file has no valid AVI format.

IS_AVI_ERR_PLAY_NOT_RUNNING No playback is running.

Related functions

isavi_StartAVI()

isavi_InitEvent()

isavi_ExitAVI()

359

369

362

377

370

362

© 2013 Thorlabs GmbH

4 Programming (SDK)

379

4.5 Obsolete Functions
We are continuously extending and enhancing the uc480 API. The resulting product upgrades sometimes require
replacing obsolete functions with new ones. We recommend against using the obsolete functions. They will
continue to be supported for reasons of backward compatibility, but they will not be documented any longer.

Note

Older functions

If it is necessary to continue working with the older functions, it is possible to add the uc480_deprecated.h
header file additionally to the uc480.h header file. The uc480_deprecated.h header file contains all obsolete
function definitions and constants which are no longer part of the uc480.h header file.

The following table lists the obsolete functions and indicates the recommended alternatives. See also History of
API functions .

Obsolete function Recommended alternative No longer
documented
since driver
version

is_ConvertImage() is_Convert()

is_DisableDDOverlay()
is_DirectRenderer()

is_EnableDDOverlay()

is_GetCameraType() is_GetCameraInfo()

is_GetCaptureErrorInfo() is_CaptureStatus()

is_GetDC()
is_DirectRenderer()

is_GetDDOvlSurface()

is_GetExposureRange is_Exposure()

is_GetGlobalFlashDelays() is_IO()

is_GetLastMemorySequence()
The uc480 memory board is not supported any
longer.

3.30is_GetMemorySequenceWindow()

is_GetNumberOfMemoryImages()

is_GetPixelClockRange() is_PixelClock()

is_GetRevisionInfo() is_GetCameraInfo() 3.20

is_GetHWGain() is_SetAutoParameter() 3.31

is_HideDDOverlay() is_DirectRenderer()

is_IsMemoryBoardConnected() The uc480 memory board is not supported any
longer.

3.30

is_LoadBadPixelCorrectionTable() is_HotPixel()

is_LoadImage()
is_ImageFile()

is_LoadImageMem()

is_LoadParameters() is_ParameterSet()

is_LockDDMem()
is_DirectRenderer()

is_LockDDOverlayMem()

is_MemoryFreezeVideo() The uc480 memory board is not supported any
longer.

3.30

is_ReleaseDC() is_DirectRenderer()

is_ResetCaptureErrorInfo() is_CaptureStatus()

is_ResetMemory() The uc480 memory board is not supported any
longer.

3.30

is_SaveBadPixelCorrectionTable() is_HotPixel()

516

382 188

383

198

384

385 231

386 174

388

198

389

390 216

391 280

392 294

231

303

393 198

394 260

395

264

396

398 292

400

198

401

403 198

404 174

405 260

© 2013 Thorlabs GmbH380

DCx Cameras

Obsolete function Recommended alternative No longer
documented
since driver
version

is_SaveImage()

is_ImageFile()
is_SaveImageEx()

is_SaveImageMem()

is_SaveImageMemEx()

is_SaveParameters() is_ParameterSet()

is_SetAOI() is_AOI()

is_SetBadPixelCorrection()
is_HotPixel()

is_SetBadPixelCorrectionTable()

is_SetBayerConversion() is_SetColorConverter()

is_SetBlCompensation() is_Blacklevel()

is_SetBrightness() is_SetGamma()

is_Blacklevel()
3.40

is_SetContrast() is_SetExposureTime()

is_SetHardwareGain()
3.40

is_SetConvertParam() is_Convert()

is_SetDDUpdateTime() is_DirectRenderer()

is_SetEdgeEnhancement() is_EdgeEnhancement()

is_SetExposureTime() is_Exposure()

is_SetFlashDelay()
is_IO()

is_SetFlashStrobe()

is_SetHwnd() is_DirectRenderer()

is_SetImageAOI()

is_AOI()is_SetImageSize()

is_SetImagePos()

is_SetIO() is_IO()

is_SetIOMask()

is_SetKeyColor() is_DirectRenderer()

is_SetLED() is_IO()

is_SetMemoryMode() The uc480 memory board is not supported any
longer.

3.30

is_SetPixelClock() is_PixelClock()

is_SetWhiteBalance()
is_SetAutoParameter() 3.31

is_SetWhiteBalanceMultipliers()

is_ShowDDOverlay()
is_DirectRenderer()

is_StealVideo()

is_TransferImage() The uc480 memory board is not supported any
longer.

3.30
is_TransferMemorySequence()

is_UnlockDDMem()

is_DirectRenderer()is_UnlockDDOverlayMem()

is_UpdateDisplay()

Attention

406

264

407

409

410

412 292

414 159

417

260

418

420 315

421 170

332

170

427

333

423 188

425 198

426 206

427 216

429

280

431

433 198

434

159438

435

440 280

441

442 198

443 280

444 294

303

446

198

447

448

198449

450

© 2013 Thorlabs GmbH

4 Programming (SDK)

381

The is_SetWhiteBalance() and is_SetWhiteBalanceMultipliers() functions have been completely
replaced by the is_SetAutoParameter() function and are no longer supported by the uc480 API.303

© 2013 Thorlabs GmbH382

DCx Cameras

4.5.1 is_ConvertImage

USB 2.0 USB 2.0

Syntax

INT is_ConvertImage(HIDS hCam,
 char* pcSource, INT nIDSource,
 char** ppcDest, INT* nIDDest,
 INT* reserved)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_Convert() function
instead (see also Obsolete functions).

is_ConvertImage() converts a raw Bayer image to the desired format. This conversion is done in the PC. You
can use is_SetConvertParam() to define the conversion settings.

Input parameters

hCam Camera handle

pcSource Pointer to the input image

nIDSource Memory ID of the input image

ppcDest Pointer to the output image

In case a NULL value is passed, a new memory is
allocated internally.

nIDDest Memory ID of the output image

reserved Reserved. NULL must be passed here.

Return values

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence
and cannot be added again.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to store
the image in the desired format.

IS_INVALID_COLOR_FORMAT Invalid color format

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_SUCCESS Function executed successfully

188

379

423

© 2013 Thorlabs GmbH

4 Programming (SDK)

383

Related functions

is_SetConvertParam()

is_SetColorMode()

is_SetBayerConversion()

4.5.2 is_DisableDDOverlay

USB 2.0 -

Syntax

INT is_DisableDDOverlay (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

In DirectDraw BackBuffer mode, is_DisableDDOverlay() disables overlay mode and releases the memory
allocated to the overlay. This results in discarding of the overlay data.

Input parameters

hCam Camera handle

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_EnableDDOverlay()

is_HideDDOverlay()

is_SetDisplayMode()

is_ShowDDOverlay()

is_GetDDOvlSurface()

423

319

420

198 379

384

393

322

446

389

© 2013 Thorlabs GmbH384

DCx Cameras

4.5.3 is_EnableDDOverlay

USB 2.0 -

Syntax

INT is_EnableDDOverlay (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

In DirectDraw BackBuffer mode, is_EnableDDOverlay() enables live overlay mode. The overlay cannot be
displayed directly, but needs to be visualized before by calling is_ShowDDOverlay() . The overlay uses black
as the so-called key color, so that overlay graphics may not contain any black color.

Input parameters

hCam Camera handle

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_SetDisplayMode()

is_DisableDDOverlay()

is_ShowDDOverlay()

is_HideDDOverlay()

is_GetDDOvlSurface()

198 379

446

322

383

446

393

389

© 2013 Thorlabs GmbH

4 Programming (SDK)

385

4.5.4 is_GetCameraType

USB 2.0 USB 2.0

Syntax

INT is_GetCameraType (HIDS hCam)

Description

is_GetCameraType() returns the camera type.

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_GetCameraInfo()
function instead (see also Obsolete functions).

Input parameters

hCam Camera handle

Return values

IS_CAMERA_TYPE_UEYE_USB_SE DCU223x, DCU224x and DCC1240xUSB camera

IS_CAMERA_TYPE_UEYE_USB_LE DCC1545M / DCC1645CUSB camera

IS_CAMERA_TYPE_UEYE_USB3_CP DCC3240x camera

231

379

© 2013 Thorlabs GmbH386

DCx Cameras

4.5.5 is_GetCaptureErrorInfo

USB 2.0 USB 2.0

Syntax

INT is_GetCaptureErrorInfo (HIDS hCam,
 UEYE_CAPTURE_ERROR_INFO* CaptureErrorInfo,
 UINT SizeCaptureErrorInfo)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_CaptureStatus()
function instead (see also Obsolete functions).

is_GetCaptureErrorInfo() returns detail information on errors that occurred during an image capture
process. The function lists all errors that occurred since the last call of the is_ResetCaptureErrorInfo()
function.

Input parameters

hCam Camera handle

CaptureErrorInfo Structure of the UC480_CAPTURE_ERROR_INFO type
that is filled by the uc480 driver. This structure then
contains the error list.

SizeCaptureErrorInfo Indicates the size of the CaptureErrorInfo structure.

Contents of the UC480_CAPTURE_ERROR_INFO structure

DWORD dwCapErrCnt_Total Returns the total number of errors occurred since the
last reset.

BYTE reserved[60] Reserved for an internal function

DWORD adwCapErrCnt
_Detail[CapErr]

This array returns the current count for each possible
error. The possible errors are listed below. To query the
counter of a specific error type, pass its definition in the
CapErr parameter.

Possible CapErr Error Types

Definition Description #

IS_CAPERR_API_NO_DEST_MEM There is no destination memory for copying the
finished image.

1

IS_CAPERR_API_CONVERSION_FAILED The current image could not be processed
correctly.

2

IS_CAPERR_API_IMAGE_LOCKED The destination buffers are locked and could not
be written to.

3

IS_CAPERR_DRV_OUT_OF_BUFFERS No free internal image memory is available to the
driver. The image was discarded.

4

IS_CAPERR_DRV_DEVICE_NOT_READY The camera is no longer available. It is not
possible to access images that have already been
transferred.

5

IS_CAPERR_USB_TRANSFER_FAILED The image was not transferred over the USB bus. 6

IS_CAPERR_DEV_TIMEOUT The maximum allowable time for image capturing
in the camera was exceeded.

7

174

379

404

© 2013 Thorlabs GmbH

4 Programming (SDK)

387

Possible cause Remedy

1 Not enough destination memory allocated or all
destination buffers locked by the application

Release locked destination memory

Allocate more destination memory

Reduce the frame rate so that there is more time
to process the filled destination memory

2 Internal error during internal processing of the
image

-

3 All destination buffers locked by the application Release locked destination memory

Allocate more destination memory

Reduce the frame rate so that there is more time
to process the filled destination memory

4 The computer takes too long to process the
images in the uc480 API (e.g. color conversion)

Reduce the frame rate so that there is more time
to process the filled image memory of the driver

Disable resource-intensive API image pre-
processing functions (e.g. edge enhancement,
color correction, choose smaller filter mask for
software color conversion)

5 The camera has been disconnected or closed -

6 Not enough free bandwidth on the USB bus for
transferring the image

Reduce the pixel clock frequency

Operate fewer cameras simultaneously on a USB
bus

Check the quality of the USB cabling and
components

7 The selected timeout value is too low for image
capture

Reduce the exposure time

Increase the timeout

8 The selected data rate of the sensor is too high Reduce the pixel clock frequency

Reduce the frame rate

Reduce the image size

9 The camera's frame rate is too high or the
bandwidth on the network is insufficient to
transfer the image

Reduce the frame rate

Increase the value for the receive descriptors in
the network card settings

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_ResetCaptureErrorInfo()

is_GetError()

is_CameraStatus()

is_SetErrorReport()

See also:

Troubleshooting

404

239

172

326

499

© 2013 Thorlabs GmbH388

DCx Cameras

4.5.6 is_GetDC

USB 2.0 -

Syntax

INT is_GetDC (HIDS hCam, HDC* phDC)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

In DirectDraw BackBuffer mode, is_GetDC() returns the device context handle of the overlay buffer. Using this
handle, it is possible to access the overlay using the Windows GDI functionality. Thus, all Windows graphics
commands such as Line, Circle, Rectangle, TextOut, … are available. You should release the device
context handle as early as possible using the is_ReleaseDC() function. While a GetDC...ReleaseDC block
is executed, the overlay buffer on the screen will not be updated.

Input parameters

hCam Camera handle

phDC Pointer to the variable that is supposed to contain the
device context handle

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_ReleaseDC()

is_ShowDDOverlay()

is_DisableDDOverlay()

is_EnableDDOverlay()

is_GetDDOvlSurface()

is_SetDisplayMode()

198 379

403

403

446

383

384

389

322

© 2013 Thorlabs GmbH

4 Programming (SDK)

389

4.5.7 is_GetDDOvlSurface

USB 2.0 -

Syntax

INT is_GetDDOvlSurface (HIDS hCam, void** ppDDSurf)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

In DirectDraw BackBuffer mode, is_GetDDOvlSurface() returns the pointer to the internal DirectDraw surface.
Thus, the functionality provided by the DirectDraw Surface interface can be used.

Input parameters

hCam Camera handle

ppDDSurf Contains the pointer to the DirectDraw Surface interface

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_SetDisplayMode()

is_DisableDDOverlay()

is_EnableDDOverlay()

is_ShowDDOverlay()

is_HideDDOverlay()

198 379

322

383

384

446

393

© 2013 Thorlabs GmbH390

DCx Cameras

4.5.8 is_GetExposureRange

USB 2.0 USB 2.0

Syntax

INT is_GetExposureRange (HIDS hCam, double* min,double* max, double* intervall)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_Exposure()
function instead (see also Obsolete functions).

Using is_GetExposureRange(), you can query the exposure values (in milliseconds) available for the currently
selected timing (pixel clock, frame rate). The available time values are comprised between min and max and can
be set in increments defined by the intervall parameter.

Attention

The increments for setting the exposure time (intervall) depend on the sensor's current timing settings (pixel
clock, frame rate). The smallest increment always corresponds to the duration of one pixel row, which is the time it
takes the sensor to read out one pixel row.

Input parameters

hCam Camera handle

min Returns the minimum available exposure time.

max Returns the maximum available exposure time.

intervall Returns the increment you can use to change the image
exposure time.

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_SetExposureTime()

is_PixelClock()

is_GetFrameTimeRange()

is_GetFramesPerSecond()

is_SetFrameRate()

216

379

427

294

241

240

329

© 2013 Thorlabs GmbH

4 Programming (SDK)

391

4.5.9 is_GetGlobalFlashDelays

USB 2.0 USB 2.0

Syntax

INT is_GetGlobalFlashDelays (HIDS hCam, ULONG* pulDelay, ULONG* pulDuration)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_IO() function
instead (see also Obsolete functions).

Rolling shutter cameras:
Using is_GetGlobalFlashDelays(), you can determine the times required to implement a global flash
function for rolling shutter cameras. This way, a rolling shutter camera can also be used as a global shutter
camera provided that no ambient light falls on the sensor outside the flash period.
If the exposure time is set too short so that no global flash operation is possible, the function returns
IS_NO_SUCCESS.

Note

To use a rolling shutter camera with the global start function, call the is_SetGlobalShutter() function
before is_GetGlobalFlashDelays(). Otherwise, incorrect values will be returned for Delay and
Duration.

Global shutter cameras:
In freerun mode, the exposure of global shutter cameras is delayed if the exposure time is not set to the
maximum value. is_GetGlobalFlashDelays() determines the required delay in order to synchronize
exposure and flash operation. In triggered mode, the return values for delay and flash duration are 0, since no
delay is necessary before exposure starts.

For further information, please refer to the Camera basics: Shutter methods chapter.

Input parameters

hCam Camera handle

pulDelay Pointer to the variable that returns the flash delay in µs.

pulDuration Pointer to the variable that returns the flash duration in
µs.

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_SetFlashStrobe()

is_SetFlashDelay()

is_SetTriggerDelay()

280

379

30

431

429

352

© 2013 Thorlabs GmbH392

DCx Cameras

4.5.10 is_GetPixelClockRange

USB 2.0 USB 2.0

Syntax

INT is_GetPixelClockRange (HIDS hCam, INT* pnMin, INT* pnMax)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_PixelClcok()
function instead (see also Obsolete functions).

is_GetPixelClockRange() returns the adjustable pixel clock range.

The pixel clock limit values can vary, depending on the camera model and operating mode. For detailed
information on the pixel clock range of a specific camera model, please refer to the Camera and sensor data
chapter.

Input parameters

hCam Camera handle

pnMin Returns the lower limit value.

pnMax Returns the upper limit value.

Return values

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_PixelClock()

is_GetFramesPerSecond()

is_GetFrameTimeRange()

is_Exposure()

294

379

460

294

240

241

216

© 2013 Thorlabs GmbH

4 Programming (SDK)

393

4.5.11 is_HideDDOverlay

USB 2.0 -

Syntax

INT is_HideDDOverlay (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

In DirectDraw BackBuffer mode, is_HideDDOverlay() hides the overlay. Only the contents of the image buffer
will be displayed. This way, the frame rate is higher on some systems than with the overlay shown. By hiding the
overlay, its data is not lost.

Input parameters

hCam Camera handle

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_ShowDDOverlay()

is_DisableDDOverlay()

is_EnableDDOverlay()

is_GetDDOvlSurface()

is_SetDisplayMode()

198 379

446

383

384

389

322

© 2013 Thorlabs GmbH394

DCx Cameras

4.5.12 is_LoadBadPixelCorrectionTable

USB 2.0 USB 2.0

Syntax

INT is_LoadBadPixelCorrectionTable (HIDS hCam, const IS_CHAR* File)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_HotPixel()
function instead (see also Obsolete functions).

is_LoadBadPixelCorrectionTable() loads a list of sensor hot pixel coordinates that was previously saved
using the is_SaveBadPixelCorrectionTable() function.

Input parameters

hCam Camera handle

File Pointer to a string which contains the name of the file where the coordinates are
stored. You can either pass an absolute or a relative path.

If NULL is passed, the "Open File" dialog opens.

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_SaveBadPixelCorrectionTable()

is_SetBadPixelCorrection()

is_SetBadPixelCorrectionTable()

260

379

405

405

417

418

© 2013 Thorlabs GmbH

4 Programming (SDK)

395

4.5.13 is_LoadImage

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_LoadImage (HIDS hCam, char* File)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_ImageFile()
function instead (see also Obsolete functions).

is_LoadImage() loads an image from a file. The image must have been saved in BMP format. It is loaded into
the active image memory.

Input parameters

hCam Camera handle

File Pointer to a filename You can either pass an absolute or a relative path.

If NULL is passed, the "Open File" dialog opens.

Return values

IS_FILE_READ_INVALID_BMP_ID The specified file is not a valid bitmap file.

IS_FILE_READ_INVALID_BMP_SIZE The bitmap size is not correct (bitmap too large).

IS_FILE_WRITE_OPEN_ERROR File cannot be opened for writing or reading.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_SUCCESS Function executed successfully

Related functions

Is_ImageFile()

is_GetImageMem()

is_SetImageMem()

264

379

264

247

337

© 2013 Thorlabs GmbH396

DCx Cameras

4.5.14 is_LoadImageMem

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_LoadImageMem (HIDS hCam, char* File, char** ppcImgMem, int* pid)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_ImageFile()
function instead (see also Obsolete functions).is_LoadImageMem() loads an image from a file. The image
must have been saved in BMP format. The image, together with its color format and color depth properties, is
loaded into a newly allocated image memory.

Using the is_FreeImageMem() function, you can release the image memory again.

Input parameters

hCam Camera handle

File File name You can either pass an absolute or a relative path.

If NULL is passed, the "Open File" dialog opens.

ppcImgMem Pointer to a variable containing the starting address

pid Pointer to a variable containing the memory ID

Return values

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence
and cannot be added again.

IS_CANT_CLEANUP_MEMORY The driver could not release the allocated memory.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_FILE_READ_INVALID_BMP_ID The specified file is not a valid bitmap file.

IS_FILE_READ_INVALID_BMP_SIZE The bitmap size is not correct (bitmap too large).

IS_FILE_WRITE_OPEN_ERROR File cannot be opened for writing or reading.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_SUCCESS Function executed successfully

Related functions

264

379

222

© 2013 Thorlabs GmbH

4 Programming (SDK)

397

is_ImageFile()

is_GetImageMem()

is_SetImageMem()

264

247

337

© 2013 Thorlabs GmbH398

DCx Cameras

4.5.15 is_LoadParameters

USB 2.0 USB 2.0

Syntax

INT is_LoadParameters (HIDS hCam, char* pFilename)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_ParameterSet()
function instead (see also Obsolete functions).

is_LoadParameters() loads the parameters for a camera from a uc480 ini file or from the camera EEPROM.
Using the is_SaveParameters() function, you can save camera parameters in an ini file or in the camera.

Only camera-specific ini files can be loaded. The uc480 parameter file section in the appendix describes the
structure of a uc480 ini file.

Attention

When loading an ini file, make sure that the image size (AOI) and color depth parameters in the ini file match those
in the allocated memory. Otherwise, display errors may occur.

Input parameters

hCam Camera handle

pFilename Pointer to a filename. You can either pass an absolute or a relative path. For
the internal camera parameter sets, these would be
"\\cam\\set1" or "/cam/set1", or
"\\cam\\set2" or "/cam/set2", respectively.

If NULL is passed, the "Open File" dialog is displayed.

You can load the parameter sets stored in the camera EEPROM using specific filenames:

pFilename

"\\cam\\set1" or "/cam/set1" Parameter set 1

"\\cam\\set2" or "/cam/set2" Parameter set 2

Return values

IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the sequence
and cannot be added again.

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_CRC_ERROR A CRC error-correction problem occurred while reading
the settings.

IS_DR_CANNOT_CREATE_SURFACE The image surface or overlay surface could not be
created.

IS_DR_CANNOT_CREATE_TEXTURE The texture could not be created.

IS_DR_CANNOT_CREATE_VERTEX_BUFFER The vertex buffer could not be created.

IS_DR_DEVICE_OUT_OF_MEMORY Not enough graphics memory available.

IS_DR_LIBRARY_NOT_FOUND The DirectRenderer library could not be found.

IS_FILE_WRITE_OPEN_ERROR File cannot be opened for writing or reading.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAPTURE_MODE The function can not be executed in the current camera

292

379

412

504

© 2013 Thorlabs GmbH

4 Programming (SDK)

399

operating mode (free run, trigger or standby).

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_OUT_OF_MEMORY No memory could be allocated.

IS_PARAMETER_SET_NOT_PRESENT Parameter set is not present.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

Related functions

is_ParameterSet() 292

© 2013 Thorlabs GmbH400

DCx Cameras

4.5.16 is_LockDDMem

USB 2.0 -

Syntax

INT is_LockDDMem (HIDS hCam, void** ppMem, INT* pPitch)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

is_LockDDMem() enables access to the image memory in DirectDraw mode and returns the pointer to the image
memory. In most cases, the image memory is located on the graphics card. Using the pointer, you have direct
access to the image memory. Make sure to release the memory as early as possible using the is_UnlockDDMem
() function.

Calling is_LockDDMem() will not interrupt the process of digitizing an image and saving it to the memory area.

While a LockDDMem … UnlockDDMem block is executed in DirectDraw BackBuffer mode, the contents of the back
buffer will not be refreshed on the screen.

Input parameters

hCam Camera handle

ppMem Pointer to the variable that holds the address pointer

pPitch Pointer to the variable that holds the pitch value

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_UnlockDDMem()

is_LockDDOverlayMem()

is_UnlockDDOverlayMem()

is_LockSeqBuf()

is_UnlockSeqBuf()

is_UpdateDisplay()

198 379

448

448

401

449

289

354

450

© 2013 Thorlabs GmbH

4 Programming (SDK)

401

4.5.17 is_LockDDOverlayMem

USB 2.0 -

Syntax

INT is_LockDDOverlayMem(HIDS hCam, void** ppMem, INT* pPitch)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

In DirectDraw BackBuffer mode, is_LockDDOverlayMem() enables access to the overlay memory and returns
the pointer to the starting address of the overlay buffer. This way, you can write data directly to the overlay buffer
without the need to use the Windows GDI functions.

pPitch returns the line offset (in bytes) from the beginning of a line to the beginning of the next line. Make sure to
release the memory again as early as possible using the is_UnlockDDOverlayMem() function.

While a LockDDOverlayMem … UnlockDDOverlayMem block is executed, the contents of the overlay buffer will
not be refreshed on the screen.

Input parameters

hCam Camera handle

ppMem Pointer to the variable that holds the address pointer

pPitch Pointer to the variable that holds the pitch value

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_UnlockDDOverlayMem()

is_LockDDMem()

is_UnlockDDMem()

is_LockSeqBuf()

is_UnlockSeqBuf()

198 379

449

449

400

448

289

354

© 2013 Thorlabs GmbH402

DCx Cameras

4.5.18 is_PrepareStealVideo

USB 2.0 -

Syntax

INT is_PrepareStealVideo (HIDS hCam, INT Mode, ULONG StealColorMode)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

is_PrepareStealVideo() enables steal mode during DirectDraw display. Using the is_StealVideo()
command, you can remove or copy an image from the DirectDraw video data stream. There are two different steal
modes:

Normal steal
This option redirects a single frame from a DirectDraw video data stream to the active user memory. The frame
will not be displayed with DirectDraw.

Copy steal
This option displays the frame with DirectDraw and copies it to the currently active image memory.

Input parameters

hCam Camera handle

Mode

IS_SET_STEAL_NORMAL Normal mode

IS_SET_STEAL_COPY Copy mode

StealColorMode reserved

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_StealVideo()

is_SetDisplayMode()

is_AllocImageMem()

is_SetImageMem()

198 379

447

447

322

157

337

© 2013 Thorlabs GmbH

4 Programming (SDK)

403

4.5.19 is_ReleaseDC

USB 2.0 -

Syntax

INT is_ReleaseDC (HIDS hCam, HDC hDC)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

In DirectDraw BackBuffer mode, is_ReleaseDC() releases the device context handle of the overlay buffer. If
overlay display is enabled using the is_ShowDDOverlay() function, the contents of the overlay buffer will be
updated on the screen after the handle release.

Input parameters

hCam Camera handle

hDC Device context handle returned by is_GetDC()

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_GetDC()

is_ShowDDOverlay()

is_DisableDDOverlay()

is_EnableDDOverlay()

is_GetDDOvlSurface()

is_SetDisplayMode()

198 379

446

388

388

446

383

384

389

322

© 2013 Thorlabs GmbH404

DCx Cameras

4.5.20 is_ResetCaptureErrorInfo

USB 2.0 USB 2.0

Syntax

INT is_ResetCaptureErrorInfo (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_CaptureStatus()
function instead (see also Obsolete functions).

is_ResetCaptureErrorInfo() deletes the list of errors that occurred while images were being captured. You
can retrieve this list using the is_GetCaptureErrorInfo() function.

Input parameters

hCam Camera handle

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_GetCaptureErrorInfo()

is_GetError()

is_CameraStatus()

174

379

386

386

239

172

© 2013 Thorlabs GmbH

4 Programming (SDK)

405

4.5.21 is_SaveBadPixelCorrectionTable

USB 2.0 USB 2.0

Syntax

INT is_SaveBadPixelCorrectionTable (HIDS hCam, const IS_CHAR* File)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_HotPixel()
function instead (see also Obsolete functions).

is_SaveBadPixelCorrectionTable() saves the user-defined hot pixel list to the specified file.

Note

You can only save the hot pixel list if you have previously added user-defined pixels with the
is_SetBadPixelCorrectionTable() function.

Input parameters

hCam Camera handle

File Pointer to a string which contains the name of the file where the coordinates are
stored. You can either pass an absolute or a relative path.

If NULL is passed, the "Save as" dialog will be displayed.

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_LoadBadPixelCorrectionTable()

is_SetBadPixelCorrection()

is_SetBadPixelCorrectionTable()

260

379

418

394

417

418

© 2013 Thorlabs GmbH406

DCx Cameras

4.5.22 is_SaveImage

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SaveImage (HIDS hCam, const IS_CHAR* File)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_ImageFile()
function instead (see also Obsolete functions).

is_SaveImage() saves an image in bitmap (*.BMP) format to a file. The images are read out from the current
image memory. The bitmap is stored with the color depth that was used when allocating the image memory (in DIB
mode) or that was set for the current color mode (in Direct3D mode).

Note

In Direct3D mode, overlay data are not saved.

Input parameters

hCam Camera handle

File Pointer to a string containing the BMP filename You can either pass an
absolute or a relative path.

If NULL is passed, the "Save as" dialog will be displayed.

Return values

IS_FILE_WRITE_OPEN_ERROR File cannot be opened for writing or reading.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_SUCCESS Function executed successfully

Related functions

is_ImageFile()

is_GetImageMem()

is_SetImageMem()

264

379

264

247

337

© 2013 Thorlabs GmbH

4 Programming (SDK)

407

4.5.23 is_SaveImageEx

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SaveImageEx (HIDS hCam, const IS_CHAR* File, INT fileFormat, INT Param)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_ImageFile()
function instead (see also Obsolete functions).

is_SaveImageEx() saves an image in bitmap (*.BMP), JPEG (*.JPG), or PNG format to a file. The images are
read out from the current image memory. The bitmap is stored with the color depth that was used when allocating
the image memory (in DIB mode) or that was set for the current color mode (in Direct3D mode).

Notes

You can save images with a bit depth of more than 8 bit in the PNG format. 12 bit formats are converted into 16
bit.

In Direct3D mode, overlay data are not saved.

Input parameters

hCam Camera handle

File Pointer to a string containing the BMP filename You can either pass
an absolute or a relative path.

If NULL is passed, the "Save as" dialog will be displayed.

fileFormat Specifies the output format of the file.

IS_IMG_BMP Bitmap format

IS_IMG_JPG JPEG format

IS_IMG_PNG PNG format

Param When you use IS_IMG_JPG or IS_IMG_PNG to specify the file
format, you can set the quality by specifying a value between 1 and
100 for Param. If Param=0, the system uses the default quality
(75).

If you use IS_IMG_BMP, Param does not take effect.

Return values

IS_FILE_WRITE_OPEN_ERROR File cannot be opened for writing or reading.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_SUCCESS Function executed successfully

264

379

© 2013 Thorlabs GmbH408

DCx Cameras

Related functions

is_ImageFile()

is_GetImageMem()

is_SetImageMem()

264

247

337

© 2013 Thorlabs GmbH

4 Programming (SDK)

409

4.5.24 is_SaveImageMem

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SaveImageMem (HIDS hCam, const IS_CHAR* File, char* pcMem, int nID)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_ImageFile()
function instead (see also Obsolete functions).

is_SaveImageMem() saves an image in bitmap (*.BMP) format to a file. The images are read out from the
specified image memory. The bitmap is stored with the color depth that was used when allocating the image
memory (in DIB mode) or that was set for the current color mode (in Direct3D mode).

Note

In Direct3D mode, overlay data are not saved.

Input parameters

hCam Camera handle

File Pointer to a string containing the BMP filename You can either pass
an absolute or a relative path.

If NULL is passed, the "Save as" dialog will be displayed.

pcMem Pointer to the image memory

nID Image memory ID

Return values

IS_FILE_WRITE_OPEN_ERROR File cannot be opened for writing or reading.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_SUCCESS Function executed successfully

Related functions

is_ImageFile()

is_GetImageMem()

is_SetImageMem()

264

379

264

247

337

© 2013 Thorlabs GmbH410

DCx Cameras

4.5.25 is_SaveImageMemEx

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SaveImageMemEx (HIDS hCam, const IS_CHAR* File, char* pcMem,
 int nID, INT fileFormat, INT Param)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_ImageFile()
function instead (see also Obsolete functions).

is_SaveImageMemEx() saves an image in bitmap (*.BMP), JPEG (*.JPG), or PNG format to a file. The images
are read out from the specified image memory. The bitmap is stored with the color depth that was used when
allocating the image memory (in DIB mode) or that was set for the current color mode (in Direct3D mode). JPEG
files are always saved with a color depth of 8 or 24 bits.

Notes

You can save images with a bit depth of more than 8 bit in the PNG format. 12 bit formats are converted into 16
bit.

In Direct3D mode, overlay data are not saved.

Input parameters

hCam Camera handle

File Pointer to a string containing the BMP filename. You can either pass
an absolute or a relative path.

If NULL is passed, the "Save as" dialog will be displayed..

pcMem Pointer to the image memory

nID Image memory ID

fileFormat Specifies the output format of the file.

IS_IMG_BMP Bitmap format

IS_IMG_JPG JPEG format

IS_IMG_PNG PNG format

Param When you use IS_IMG_JPG or IS_IMG_PNG to specify the file
format, you can set the quality by specifying a value between 1 and
100 for Param. If Param=0, the system uses the default quality
(75).

If you use IS_IMG_BMP, Param does not take effect.

264

379

© 2013 Thorlabs GmbH

4 Programming (SDK)

411

Return values

IS_FILE_WRITE_OPEN_ERROR File cannot be opened for writing or reading.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_OUT_OF_MEMORY No memory could be allocated.

IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

IS_SUCCESS Function executed successfully

Related functions

is_ImageFile()

is_GetImageMem()

is_SetImageMem()

264

247

337

© 2013 Thorlabs GmbH412

DCx Cameras

4.5.26 is_SaveParameters

USB 2.0 USB 2.0

Syntax

INT is_SaveParameters (HIDS hCam, const IS_CHAR* pFilename)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_ParameterSet()
function instead (see also Obsolete functions).

is_SaveParameters() saves the current camera parameters to an ini file or to the EEPROM of the camera. You
can load saved parameters using the is_LoadParameters() function. The uc480 parameter file section
in the appendix describes the structure of a uc480 ini file.

Input parameters

hCam Camera handle

pFileName Pointer to a filename You can either pass an absolute or a relative path. For
internal parameter sets, these are "\\cam\\set1" or "/cam/set1", or "\
\cam\\set2" or "/cam/set2", respectively.

If NULL is passed, the "Save as" dialog will be displayed..

You can save two parameter sets in the non-volatile EEPROM of the camera using specific filenames:

pFileName

"\\cam\\set1" or "/cam/set1" Parameter set 1

"\\cam\\set2" or "/cam/set2" Parameter set 2

Return values

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_CRC_ERROR A CRC error-correction problem occurred while reading
the settings.

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

292

379

398 504

© 2013 Thorlabs GmbH

4 Programming (SDK)

413

Related functions

is_ParameterSet()

is_CameraStatus()

292

172

© 2013 Thorlabs GmbH414

DCx Cameras

4.5.27 is_SetAOI

USB 2.0 USB 2.0

Syntax

INT is_SetAOI (HIDS hCam, INT type, INT* pXPos, INT* pYPos, INT* pWidth, INT* pHeight)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_AOI() function
instead (see also Obsolete functions).

is_SetAOI() can be used to set the size and position of an area of interest (AOI) within an image. The following
AOIs can be defined:

Image AOI – display of an image portion

Auto brightness AOI – reference area of interest for automatic brightness control

Auto whitebalance AOI – reference area of interest of automatic white balance control

Attention

By default, the window size for auto AOIs is always maximum, i.e. it corresponds to the current image AOI.

After a change to the image geometry (by resetting an image AOI, by binning or sub-sampling), the auto AOIs will
always be reset to the image AOI value (i.e. to maximum size). This means that it might be necessary to set the
AOIs for the auto features again manually.

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After
executing is_SetAOI(), calling the following functions is recommended in order to keep the defined camera
settings:

is_SetFrameRate()

is_SetExposureTime()

If you are using the DCx Camera's flash function: is_IO()

Input parameters

The pXPos and pYPos parameters represent an offset with respect to the upper left image corner. The cut window
is copied to the start position in the memory. If you want the image to be copied to the same offset within the
memory, you can link the new position with a logical OR to the IS_SET_IMAGEPOS_X_ABS and
IS_SET_IMAGEPOS_Y_ABS parameters (Example).

hCam Camera handle

type

IS_SET_IMAGE_AOI Sets an image AOI.

IS_GET_IMAGE_AOI Returns the current image AOI.

IS_SET_AUTO_BRIGHT_AOI Sets average AOI values for auto gain and auto shutter.

IS_GET_AUTO_BRIGHT_AOI Returns the current auto brightness AOI.

IS_SET_AUTO_WB_AOI Sets an auto white balance AOI.

IS_GET_AUTO_WB_AOI Returns the current auto white balance AOI.

pXPos Pointer to the horizontal position of the AOI

Returns the current setting when used together with
the IS_GET_… parameters.

0...XPosMax
| IS_SET_IMAGEPOS_X_ABS

Applies the absolute position to the memory as well.

pYPos Pointer to the vertical position of the AOI

Returns the current setting when used together with
the IS_GET_… parameters.

159

379

329

427

280

416

© 2013 Thorlabs GmbH

4 Programming (SDK)

415

0...YPosMax
| IS_SET_IMAGEPOS_Y_ABS

Applies the absolute position to the memory as well.

pWidth Pointer to the width of the AOI

Returns the current setting when used together with
the IS_GET_… parameters.

pHeight Pointer to the height of the AOI

Returns the current setting when used together with
the IS_GET_…. parameters.

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_SetImagePos()

is_SetBinning()

is_SetSubSampling()

is_SetAutoParameter()

435

310

347

303

© 2013 Thorlabs GmbH416

DCx Cameras

Example

© 2013 Thorlabs GmbH

4 Programming (SDK)

417

4.5.28 is_SetBadPixelCorrection

USB 2.0 USB 2.0

Syntax

INT is_SetBadPixelCorrection (HIDS hCam, INT nEnable, INT threshold)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_HotPixel()
function instead (see also Obsolete functions).

is_SetBadPixelCorrection() enables/disables the software correction of sensor hot pixels.

Attention

This correction will not work while sub-sampling or binning are enabled or raw Bayer mode is used.

Input parameters

hCam Camera handle

nEnable

IS_BPC_DISABLE Disables the correction function.

IS_BPC_ENABLE_SOFTWARE Enables software correction based on the hot pixel list
stored in the EEPROM.

IS_BPC_ENABLE_USER Enables software correction based on user-defined
values. First, the is_SetBadPixelCorrectionTable
() function must be called.

IS_GET_BPC_MODE Returns the current mode.

IS_GET_BPC_THRESHOLD Returns the current threshold value.

threshold Currently not used

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

When used with
IS_GET_BPC_MODE

Current mode

When used with
IS_GET_BPC_THRESHOLD

Current threshold value

Related functions

is_LoadBadPixelCorrectionTable()

is_SaveBadPixelCorrectionTable()

is_SetBadPixelCorrectionTable()

260

379

418

394

405

418

© 2013 Thorlabs GmbH418

DCx Cameras

4.5.29 is_SetBadPixelCorrectionTable

USB 2.0 USB 2.0

Syntax

INT is_SetBadPixelCorrectionTable (HIDS hCam, INT nMode, WORD* pList)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_HotPixel()
function instead (see also Obsolete functions).

is_SetBadPixelCorrectionTable() can be used to set the table containing the hot pixel positions which will
be used by the user-defined hot pixel correction function. You can enable hot pixel correction by calling
is_SetBadPixelCorrection() . Each value in the table consists of a 2-byte WORD data type. The first value
indicates the number of pixel coordinates in the table, the coordinates are listed subsequently (first X, then Y).

A table with 3 hot pixels must be structured as follows:

3 X1 Y1 X2 Y2 X3 Y3

Input parameters

hCam Camera handle

nMode

IS_SET_BADPIXEL_LIST Sets a new user-defined list.

The pList parameter points to a list which has the
format described above.

IS_GET_LIST_SIZE Returns the number of pixel coordinates included in the
user-defined list.

If the list contains no coordinates, the return value is -1.

IS_GET_BADPIXEL_LIST Copies the user-defined list to the pList parameter.
Make sure to allocate the memory accordingly.

pList Pointer to the starting address of the hot pixel table

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

When used with
IS_GET_LIST_SIZE

Number of coordinates in the list

If the list contains no coordinates, the return value is -1.

Related functions

is_LoadBadPixelCorrectionTable()

is_SaveBadPixelCorrectionTable()

is_SetBadPixelCorrection()

260

379

417

394

405

417

© 2013 Thorlabs GmbH

4 Programming (SDK)

419

Example

WORD *pList = NULL;

// Number of coordinates in the list
INT nCount = is_SetBadPixelCorrectionTable (hCam, IS_GET_LIST_SIZE, NULL);

if (nCount > 0)
{
 // Allocate memory for the entire list
 pList = new WORD[1 + 2 * nCount];

 // Read out list
 is_SetBadPixelCorrectionTable (hCam, IS_GET_BADPIXEL_LIST, pList);

 // Release the list again
 delete [] pList;
}
else
{
 // No hot pixel list programmed
}

© 2013 Thorlabs GmbH420

DCx Cameras

4.5.30 is_SetBayerConversion

USB 2.0 USB 2.0

Syntax

INT is_SetBayerConversion (HIDS hCam, INT nMode)

Description

is_SetBayerConversion() enables you to select one of two algorithms for the Bayer conversion. These
algorithms vary in the obtainable quality and in the required computer load.

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_SetColorConverter
() function instead (see also Obsolete functions).

Note

This function can be used only for the 24 bit, 32 bit and Y8 color formats (color cameras).

Input parameters

hCam Camera handle

nMode

IS_SET_BAYER_CV_BETTER Good quality, minor color artifacts, lower computational
load

IS_SET_BAYER_CV_BEST Best quality and edge acuity, higher computational load

IS_GET_BAYER_CV_MODE Returns the current setting.

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

When used with
IS_GET_BAYER_CV_MODE

Current setting

Related functions

is_SetColorConverter()

is_SetColorMode()

is_SetColorCorrection()

315 379

315

319

317

© 2013 Thorlabs GmbH

4 Programming (SDK)

421

4.5.31 is_SetBlCompensation

USB 2.0

USB 3.0

USB 2.0

USB 3.0

Syntax

INT is_SetBlCompensation (HIDS hCam, INT nEnable, INT offset, INT reserved)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_Blacklevel()
function instead (see also Obsolete functions).

is_SetBlCompensation() enables the black level correction function which might improve the image quality
under certain circumstances. By default, the sensor adjusts the black level value for each pixel automatically. If the
environment is very bright, it can be necessary to adjust the black level manually by the offset parameter.

Black level correction - Auto Black level correction - Auto +
offset

Black level correction - Offset

Input parameters

hCam Camera handle

nEnable

IS_BL_COMPENSATION_DISABLE Disables automatic black level correction. The offset
value is used as black level instead. This mode is only
supported by sensors of the UI-154x/UI-554x series.

IS_BL_COMPENSATION_ENABLE Enables automatic black level correction. The offset
value is added to the automatic black level value.

IS_GET_BL_COMPENSATION Returns the current mode.

IS_GET_BL_OFFSET Returns the currently set value for offset.

IS_GET_BL_DEFAULT_MODE Returns the default mode.

IS_GET_BL_DEFAULT_OFFSET Returns the default value for offset.

IS_GET_BL_SUPPORTED_MODE Returns the supported modes.

Possible values:
IS_BL_COMPENSATION_ENABLE
The sensor supports automatic black level correction.
IS_BL_COMPENSATION_OFFSET
For the sensor used, it is also possible to set the offset
manual.

IS_IGNORE_PARAMETER The nEnable parameter is ignored.

offset Contains the offset value used for compensation. Valid
values are between 0 and 255.

IS_IGNORE_PARAMETER The offset parameter is ignored.

reserved Reserved. 0 must be passed.

170

379

464

© 2013 Thorlabs GmbH422

DCx Cameras

Return values

When used together with
IS_GET_BL_SUPPORTED_MODE

Supported modes

When used together with
IS_GET_BL_COMPENSATION

Current mode

When used together with
IS_GET_BL_OFFSET

Current offset

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file
(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

© 2013 Thorlabs GmbH

4 Programming (SDK)

423

4.5.32 is_SetConvertParam

USB 2.0 USB 2.0

Syntax

INT is_SetConvertParam (HIDS hCam,
 BOOL ColorCorrection,
 INT BayerConversionMode, INT ColorMode, INT Gamma,
 double* WhiteBalanceMultipliers)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_Convert() function
instead (see also Obsolete functions).

Using is_SetConvertParam(), you can set the parameters for converting a raw Bayer image to a color image.
To convert the image, use the is_ConvertImage() function.

Input parameters

hCam Camera handle

ColorCorrection Enables/disables color correction.

BayerConversionMode Sets the Bayer conversion mode.

IS_SET_BAYER_CV_BETTER Normal quality

IS_SET_BAYER_CV_BEST Best quality (higher CPU load)

ColorMode Sets the color mode for the output image.

For a list of all available color formats and the
associated input parameters, see the Appendix: Color
and memory formats section.

Gamma Gamma value multiplied by 100. Range: [1…1000]

WhiteBalanceMultipliers Pointer to an array containing the red, green and blue
gain values

Return values

IS_INVALID_COLOR_FORMAT Invalid color format

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid range or is not
supported for this sensor or is not available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_ConvertImage()

is_SetColorMode()

is_SetColorConverter()

188

379

382

502

382

319

315

© 2013 Thorlabs GmbH424

DCx Cameras

Example

Conversion of a raw Bayer image to RGB24. The memory is allocated automatically.

INT nRet;
char * pcSource;
INT nIDSource;
INT nX,nY,nBits,nPitch;

// Create raw Bayer test image
is_AllocImageMem (hCam, 256, 256, 8, &pcSource, &nIDSource);
is_InquireImageMem (hCam, pcSource, nIDSource, &nX ,&nY, &nBits, &nPitch);
for (int j = 0; j<nY; j++)
{
 for (int i = 0; i<nX; i++)
 {
 pcSource[i + j * nPitch] = i;
 }
}

// Define conversion parameters (example)
INT Gamma = 120;
double rgbGains[3];
rgbGains[0] = 1.0 ; // Red channel gain
rgbGains[1] = 3.0 ; // Green channel gain
rgbGains[2] = 1.0 ; // Blue channel gain

char* pcDest; // Pointer to the newly allocated image memory
INT nIDDest; // ID of the newly allocated image memory

// Set conversion parameters
nRet = is_SetConvertParam(hCam, TRUE, IS_SET_BAYER_CV_BETTER, IS_CM_RGB8_PACKED, Gamma, rgbGains);

// Convert image
if (nRet == IS_SUCCESS)
{
 pcDest = NULL;
 is_ConvertImage(hCam, pcSource, nIDSource, &pcDest, &nIDDest, 0);
}

// Release allocated image memory
is_FreeImageMem (hCam, pcSource, nIDSource);
is_FreeImageMem (hCam, pcDest, nIDDest);

© 2013 Thorlabs GmbH

4 Programming (SDK)

425

4.5.33 is_SetDDUpdateTime

USB 2.0 -

Syntax

INT is_SetDDUpdateTime (HIDS hCam, INT ms)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

is_SetDDUpdateTime() sets the timer interval used for the video image update cycle in DirectDraw BackBuffer
mode.

Input parameters

hCam Camera handle

ms Time in milliseconds. Valid range: 20...2000 ms

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_SetDisplayMode()

is_UpdateDisplay()

198 379

322

450

© 2013 Thorlabs GmbH426

DCx Cameras

4.5.34 is_SetEdgeEnhancement

USB 2.0 USB 2.0

Syntax

INT is_SetEdgeEnhancement (HIDS hCam, INT nEnable)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_EdgeEnhancement()
 function instead (see also Obsolete functions).

is_SetEdgeEnhancement() enables a software edge filter. Due to Bayer format color conversion, the original
edges of a color image may easily become blurred. By enabling the digital edge filter, you can optimize edge
representation. This function causes a higher CPU load.

Input parameters

hCam Camera handle

nEnable

IS_EDGE_EN_DISABLE Disables the edge filter.

IS_EDGE_EN_STRONG Enables strong edge enhancement.

IS_EDGE_EN_WEAK Enables weaker edge enhancement.

IS_GET_EDGE_ENHANCEMENT Returns the current setting.

Return values

When used together with
IS_GET_EDGE_ENHANCEMENT

Current setting

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_NO_SUCCESS General error message

IS_SUCCESS Function executed successfully

Related functions

is_SetColorMode()

is_SetColorConverter()

206 379

319

315

© 2013 Thorlabs GmbH

4 Programming (SDK)

427

4.5.35 is_SetExposureTime

USB 2.0 USB 2.0

Syntax

INT is_SetExposureTime (HIDS hCam, double EXP, double* newEXP)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_Exposure()
function instead (see also Obsolete functions).

Using is_SetExposureTime(), you can set the exposure time (in milliseconds). Since this value depends on
the sensor timing, the exposure time actually used may slightly deviate from the value set here. The actual
exposure time is returned by the newEXP parameter.

In free-running mode (is_CaptureVideo()), any modification of the exposure time will only become effective
when the next image but one is captured. In trigger mode (is_SetExternalTrigger()), the modification will
be applied to the next image.

For minimum and maximum exposure times as well as other sensor-based dependencies, please refer to Camera
and sensor data chapter.

Notes

1. New Driver Versions

Newer driver versions sometimes allow an extended value range for the exposure time setting. We recommend to
query the value range every time and set the exposure time explicitly.

2. Settings with Influence on Exposure Time

The use of the following functions will affect the exposure time:

is_PixelClock()

is_SetOptimalCameraTiming()

is_SetFrameRate() (if the new image duration is shorter that the exposure time)

is_AOI() (if the image size is changed)

is_SetSubSampling()

is_SetBinning()

Changes made to the window size, the frame rate or the read-out timing (pixel clock frequency) also affect the
defined exposure time. For this reason, you need to call is_SetExposureTime() again after such changes.

3. Exposure Time Increment

The increments for setting the exposure time (IS_GET_EXPOSURE_INCREMENT) depend on the sensor's current
timing settings (pixel clock, frame rate). The smallest increment always corresponds to the duration of one pixel
row, which is the time it takes the sensor to read out one pixel row.

Some sensors allow setting the exposure time with a finer increment (IS_GET_EXPOSURE_FINE_INCREMENT).
This function is currently only supported by the sensors of the DCC1240x / DCC3240x models.

4. Rounding Errors

When calculating a new exposure time based on the ..._INCREMENT parameter, please note that calculations
with floating point values in the PC will always be subject to rounding errors. Therefore, an addition or subtraction of
an n*INCREMENT value might not always produce the exact desired result. In this case, the uc480 API rounds
down the floating point value and sets the exposure time to the next lower value.

You can avoid this behavior by additionally adding or subtracting the value INCREMENT/2.f (half intervall) when
calculating with n*INCREMENT. This ensures that the desired value will be set even after rounding.

216

379

177

327

460

294

338

329

159

347

310

461

© 2013 Thorlabs GmbH428

DCx Cameras

Input parameters

hCam Camera handle

EXP New desired exposure time

For EXP=0.0, the exposure time is 1/frame rate.

IS_GET_EXPOSURE_TIME Returns the current exposure time in the newEXP
parameter.

IS_GET_DEFAULT_EXPOSURE Returns the default exposure time.

IS_SET_ENABLE_AUTO_SHUTTER Enables the auto exposure function (see also
is_SetAutoParameter()).

IS_GET_EXPOSURE_MIN_VALUE Returns the minimum available exposure time.

IS_GET_EXPOSURE_MAX_VALUE Returns the maximum available exposure time.

IS_GET_EXPOSURE_INCREMENT Returns the increment you can use to change the
image exposure time.

IS_GET_EXPOSURE_FINE_INCREMENT Returns a finer exposure time increment for some
sensors.

newEXP When setting a new exposure time via EXP:

Returns the exposure time actually set (may deviate
from desired exposure time)

When passing other parameters via EXP:
Returns the queried value (e. g. current exposure time)

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

Related functions

is_SetFrameRate()

is_Exposure()

is_PixelClock()

is_SetOptimalCameraTiming()

is_SetAutoParameter()

303

329

216

294

338

303

© 2013 Thorlabs GmbH

4 Programming (SDK)

429

4.5.36 is_SetFlashDelay

USB 2.0 USB 2.0

Syntax

INT is_SetFlashDelay (HIDS hCam, ULONG ulDelay, ULONG ulDuration)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_IO() function
instead (see also Obsolete functions).

is_SetFlashDelay() sets a delay for driving the flash output. In addition, you can specify the flash duration.

This allows the implementation of a global flash functionality which exposes all rows of a rolling shutter sensor.
In addition, it is possible, for a camera with global shutter sensors, to set the flash start in free-run mode to the
start time of the exposure window.

For further information, please refer to the Digital in-/output (trigger/flash) and Shutter methods chapters.

Note

Accuracy of Flash Synchronization

The following parameters have an influence on the camera's internal timing:

Image geometry (CMOS and CCD sensors)

Pixel clock (CMOS and CCD sensors)

Exposure time (CCD sensors)

If you change any of these parameters, you will have to set the flash duration and flash delay parameters once
again.

Input parameters

hCam Camera handle

ulDelay Time by which the flash start is delayed (in µs)

0: No delay

For 0 < ulDelay < 40 the driver automatically
sets ulDelay = 40

IS_GET_FLASH_DELAY Returns the currently set delay time.

IS_GET_FLASH_DURATION Returns the currently set flash duration.

IS_GET_MIN_FLASH_DELAY Returns the minimum value for the delay.

IS_GET_MIN_FLASH_DURATION Returns the minimum value for the flash duration.

IS_GET_MAX_FLASH_DELAY Returns the maximum value for the delay.

IS_GET_MAX_FLASH_DURATION Returns the maximum value for the flash duration.

IS_GET_FLASH_DELAY_GRANULARITY Returns the increment of the adjustable delay time.

IS_GET_FLASH_DURATION_GRANULARITY Returns the increment of the adjustable flash duration.

ulDuration Time during which the flash is on (in µs).

If 0 is passed, the flash output will be active until the
end of the exposure time. For sensors with Global
Start Shutter this is the time until the end of exposure
of the last sensor row

280

379

31

30

47 30

144

294

216

© 2013 Thorlabs GmbH430

DCx Cameras

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

When used with
IS_GET_FLASH_DELAY
IS_GET_FLASH_DURATION

Current setting

Related functions

is_IO()

is_SetExternalTrigger()

is_SetTriggerDelay()

280

327

352

© 2013 Thorlabs GmbH

4 Programming (SDK)

431

4.5.37 is_SetFlashStrobe

USB 2.0 USB 2.0

Syntax

INT is_SetFlashStrobe (HIDS hCam, INT nMode, INT nLine)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_IO() function
instead (see also Obsolete functions).

is_SetFlashStrobe() controls the DCx Camera's digital outputs and defines the flash strobe behavior. The
digital outputs can be used in both freerun mode and trigger mode. You can synchronize the output level to the
exposure time or set it statically.

For details on flash timing, see the Digital input/output (trigger/flash) and Operating modes chapters.

Notes

Duration and Trigger Delay

You can set the flash duration and flash delay using the is_SetFlashDelay() function. The
is_GetGlobalFlashDelays() returns the values required for precisely synchronizing the flash signal to the
current timing settings.

Accuracy of Flash Synchronization

The following parameters have an influence on the camera's internal timing:

Image geometry (CMOS and CCD sensors)

Pixel clock (CMOS and CCD sensors)

Exposure time (CCD sensors)

If you change any of these parameters, you will have to set the flash duration and flash delay parameters once
again.

Input parameters

hCam Camera handle

nMode (Flash mode)

Flash strobe with exposure time synchronization

IS_SET_FLASH_OFF Disables the digital output.

IS_SET_FLASH_LO_ACTIVE Enables the flash strobe in trigger mode.

LO_ACTIVE: The digital output is set to low level for the
flash duration.

IS_SET_FLASH_HI_ACTIVE Enables the flash strobe in trigger mode.

HI_ACTIVE: The digital output is set to high level for
the flash duration.

IS_SET_FLASH_LO_ACTIVE_FREERUN Enables the flash strobe in freerun mode.

LO_ACTIVE: The digital output is set to low level for the
flash duration.

IS_SET_FLASH_HI_ACTIVE_FREERUN Enables the flash strobe in freerun mode.

HI_ACTIVE: The digital output is set to high level for
the flash duration.

IS_GET_FLASHSTROBE_MODE Returns the current mode.

IS_SET_FLASH_IO_1 Additionally enables the flash strobe via the first general
purpose I/O (GPIO 1) if supported by the camera
model.

IS_SET_FLASH_IO_2 Additionally enables the flash strobe via the second
general purpose I/O (GPIO 2) if supported by the

280

379

47 17

429

391

144

294

216

© 2013 Thorlabs GmbH432

DCx Cameras

hCam Camera handle

camera model.

IS_GET_SUPPORTED_FLASH_IO_PORTS Returns which of the general purpose I/Os (GPIO) can
be used for the flash strobe

Statically setting the output level

IS_SET_FLASH_HIGH Statically sets the digital output to high level (HIGH).

IS_SET_FLASH_LOW Statically sets the digital output to low level (LOW).

nLine Currently not used

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

When used with
IS_GET_FLASHSTROBE_MODE

Current setting

When used with
IS_GET_SUPPORTED_FLASH_IO_PORTS

Returns the supported ports linked by a logical OR.
IS_SET_FLASH_IO_1
IS_SET_FLASH_IO_2

Related functions

is_SetFlashDelay()

is_IO()

is_SetExternalTrigger()

is_SetTriggerDelay()

is_CaptureVideo()

Example

//Software trigger mode, HI_ACTIVE flash mode
is_SetExternalTrigger (hCam, IS_SET_TRIGGER_SOFTWARE);
is_SetFlashStrobe (hCam, IS_SET_FLASH_HI_ACTIVE, 0);
is_FreezeVideo (hCam, IS_WAIT);

// Flash additionally on second GPIO output
is_SetFlashStrobe (hCam, IS_SET_FLASH_HI_ACTIVE | IS_SET_FLASH_IO_2, 0);

// Flash only on normal flash output
is_SetFlashStrobe (hCam, IS_SET_FLASH_HI_ACTIVE, 0);

Sample programs

uc480 Flash Strobe (C++)

uc480 IO (C++)

429

280

327

352

177

© 2013 Thorlabs GmbH

4 Programming (SDK)

433

4.5.38 is_SetHwnd

USB 2.0

Syntax

INT is_SetHwnd (HIDS hCam, HWND hwnd)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

is_SetHwnd() sets a new window handle for image output in DirectDraw mode. The new handle and the image
output will only be effective when is_SetDisplayMode() is called for the next time.

Input parameters

hCam Camera handle

hwnd Window handle

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_SetDisplayMode()

198 379

322

322

© 2013 Thorlabs GmbH434

DCx Cameras

4.5.39 is_SetImageAOI

USB 2.0 USB 2.0

Syntax

INT is_SetImageAOI (HIDS hCam,
 INT xPos, INT yPos,
 INT width, INT height)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_AOI() function
instead (see also Obsolete Functions).

Input parameters

hCam Camera handle

xPos X position of the upper left corner.

yPos Y position of the upper left corner.

width Image width

height Image height

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

IS_INVALID_MODE Camera is in standby mode, function not allowed

Related functions

is_AOI()

is_SetBinning()

is_SetSubSampling()

159

379

159

310

347

© 2013 Thorlabs GmbH

4 Programming (SDK)

435

4.5.40 is_SetImagePos

USB 2.0 USB 2.0

Syntax

INT is_SetImagePos (HIDS hCam, INT x, INT y)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_AOI() function
instead (see also Obsolete functions).

is_SetImagePos() determines the position of an area of interest (AOI) in the display window. When used
together with the is_SetAOI() function, you can cut out an area of interest of the full video image.

To avoid a positional mismatch between the display area and the image area, make sure to call the functions in the
correct order. Starting from the original image, it is mandatory to keep to the following order:

1. is_SetAOI()

2. is_SetImagePos()

Attention

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After
executing is_SetImagePos(), calling the following functions is recommended in order to keep the defined
camera settings:

is_SetFrameRate()

is_SetExposureTime()

If you are using the DCx Camera's flash function: is_SetFlashStrobe()

Input parameters

The x and y parameters represent an offset with respect to the upper left image corner. The cut window is copied to
the start position in the memory. If you want the image to be copied to the same offset within the memory, you can
link the new position with a logical OR to the IS_SET_IMAGE_POS_X_ABS and IS_SET_IMAGE_POS_Y_ABS
parameters.

hCam Camera handle

x

0...xMax Sets the horizontal position

0...xMax
| IS_SET_IMAGE_POS_X_ABS

Applies the absolute position to the memory as well.

IS_GET_IMAGE_POS_X Returns the current x position.

IS_GET_IMAGE_POS_X_MIN Returns the minimum value for the horizontal AOI
position.

IS_GET_IMAGE_POS_X_MAX Returns the maximum value for the horizontal AOI
position.

IS_GET_IMAGE_POS_X_INC Returns the increment for the horizontal AOI position.

IS_GET_IMAGE_POS_X_ABS Returns the absolute horizontal position in the memory.

IS_GET_IMAGE_POS_Y Returns the current Y position.

IS_GET_IMAGE_POS_Y_MIN Returns the minimum value for the vertical AOI position.

IS_GET_IMAGE_POS_Y_MAX Returns the maximum value for the vertical AOI
position.

IS_GET_IMAGE_POS_Y_INC Returns the increment for the vertical AOI position.

IS_GET_IMAGE_POS_Y_ABS Returns the absolute vertical position in the memory.

159

379

414

414

329

427

431

© 2013 Thorlabs GmbH436

DCx Cameras

y

0...yMax Sets the vertical position

0...yMax
| IS_SET_IMAGE_POS_Y_ABS

Applies the absolute position to the memory as well.

0 When returning settings via parameter x (s. above)

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

When used with
IS_GET_IMAGE_POS parameters

Current setting

IS_INVALID_MODE Camera is in standby mode, function not allowed

Related functions

is_AOI()

is_ImageFormat()

159

267

© 2013 Thorlabs GmbH

4 Programming (SDK)

437

Example

Examples for is_SetImagePos

© 2013 Thorlabs GmbH438

DCx Cameras

4.5.41 is_SetImageSize

USB 2.0 USB 2.0

Syntax

INT is_SetImageSize (HIDS hCam, INT x, INT y)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_AOI() function
instead (see also Obsolete functions).

In conjunction with the is_SetImagePos() settings, is_SetImageSize() determines the size of the
captured area of interest (AOI).

To avoid a positional mismatch between the display area and the image area, make sure to call the functions in the
correct order. Starting from the original image, it is mandatory to keep to the following order:

1.is_SetImageSize()

2.is_SetImagePos()

Hint

is_SetAOI() combines both functions. With is_SetAOI(), you can set the position and size of an area of
interest using a single function call.

Note

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After
executing is_SetImageSize(), calling the following functions is recommended in order to keep the defined
camera settings:

is_SetFrameRate()

is_Exposure()

If you are using the DCx Camera's flash function: is_IO()

Input parameters

hCam Camera handle

x

1...xMax Sets the image width

IS_GET_IMAGE_SIZE_X Returns the current image width.

IS_GET_IMAGE_SIZE_X_MIN Returns the minimum AOI image width.

IS_GET_IMAGE_SIZE_X_MAX Returns the maximum AOI image width.

IS_GET_IMAGE_SIZE_X_INC Returns the increment for the AOI image width.

IS_GET_IMAGE_SIZE_Y Returns the current image height.

IS_GET_IMAGE_SIZE_Y_MIN Returns the minimum AOI image height

IS_GET_IMAGE_SIZE_Y_MAX Returns the maximum AOI image height

IS_GET_IMAGE_SIZE_Y_INC Returns the increment for the AOI image height

y

1...yMax Sets the image height

0 Return settings

159

379

435

435

414

329

216

280

© 2013 Thorlabs GmbH

4 Programming (SDK)

439

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

When used with
IS_GET_IMAGE_SIZE parameters

Current setting

IS_INVALID_MODE Camera is in standby mode, function not allowed

Related functions

is_AOI() 159

© 2013 Thorlabs GmbH440

DCx Cameras

4.5.42 is_SetIO

USB 2.0 USB 2.0

Syntax

INT is_SetIO (HIDS hCam, INT nIO)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_IO() function
instead (see also Obsolete functions).

is_SetIO() sets the additional digital outputs (GPIOs) of the DCx Camera or returns their current states. Using
is_SetIOMask() , you can define each GPIO as a digital input or output.

Attention

To be able to set the Status of a GPIO you must first configure the GPIO as output using is_SetIOMask() . If
only one GPIO is configured as output the command is_SetIO() has no effect on the other GPIO.

The GPIOs are not provided with optocouplers and use TTL voltages. For information on GPIO wiring, please refer
to the Electrical Specifications chapter.

Note

To connect and control a flash (strobe) unit for the DCx Cameras, it is recommended to use the flash output
provided (see is_SetFlashStrobe()).

Input parameters

hCam Camera handle

nIO Bit mask for outputs

0x00 (00) Sets both outputs to 0.

0x01 (01) Sets the first output to 1, the second one to 0.

0x02 (10) Sets the first output to 0, the second one to 1.

0x03 (11) Sets both outputs to 1.

IS_GET_IO Reads the states of the GPIOs. If a GPIO is configured
as input this reads the signal applied to the GPIO.

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

When used with
IS_GET_IO

Current setting

Related functions

is_SetIOMask()

is_GetImageInfo()

is_SetFlashStrobe()

is_SetExternalTrigger()

280

379

441

441

487

431

441

244

431

327

© 2013 Thorlabs GmbH

4 Programming (SDK)

441

4.5.43 is_SetIOMask

USB 2.0 USB 2.0

Syntax

INT is_SetIOMask (HIDS hCam, INT nMask)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_IO() function
instead (see also Obsolete functions).

Using is_SetIOMask(), you can configure the general purpose I/Os (GPIO) of some DCx Camera models as an
input or output. The is_SetIO() function sets or returns the current GPIO states.

The GPIOs are not provided with optocouplers and use TTL voltages. For information on GPIO wiring, please refer
to the Electrical Specifications chapter.

Note

To use hardware triggering with the DCx Cameras, we suggest that you use the trigger input provided for this
purpose (see is_SetExternalTrigger()). To connect and control a flash (strobe) unit for the DCx
Cameras, it is recommended to use the flash output provided (see is_SetFlashStrobe()).Input
parameters

hCam Camera handle

nMask Bit mask for inputs/outputs.

0x00 (00) Use both GPIOs as inputs.

0x01 (01) Use the first GPIO as output, the second one as input.

0x02 (10) Use the first GPIO as input, the second one as output.

0x03 (11) Use both GPIOs as outputs.

IS_GET_IO_MASK Returns the current bit mask.

IS_GET_INPUT_MASK Returns the IOs to be used as inputs.

IS_GET_OUTPUT_MASK Returns the IOs to be used as outputs.

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Wen used with
IS_GET_IO

Current setting

When used with
IS_GET_INPUT_MASK
IS_GET_OUTPUT_MASK

Bit masks of the IOs to be used.

Related functions

is_SetIO()

is_GetImageInfo()

is_SetFlashStrobe()

is_SetExternalTrigger()

280

379

440

487

327

431

440

244

431

327

© 2013 Thorlabs GmbH442

DCx Cameras

4.5.44 is_SetKeyColor

USB 2.0 -

Syntax

INT is_SetKeyColor (HIDS hCam, INT r, INT g, INT b)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

Using is_SetKeyColor(), you define the key color for DirectDraw Overlay Surface mode.

This function can also be used to return the key color. Use the r parameter to specify the color value to be
returned. Depending on the call type, the function returns either a value reflecting the color content (0...255) or the
corresponding RGB value (0 ... 16777215).

Input parameters

hCam Camera handle

r Red content of the key color (0...255).

IS_GET_KC_RED The function returns the red content value.

IS_GET_KC_GREEN The function returns the green content value.

IS_GET_KC_BLUE The function returns the blue content value.

IS_GET_KC_RGB The function returns the RGB color.

g Green content of the key color (0...255).

b Blue content of the key color (0...255).

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

When used with
IS_GET_KC_RGB
IS_GET_KC_RED
IS_GET_KC_GREEN
IS_GET_KC_BLUE

Color value

Related functions

is_SetDisplayMode()

is_ShowDDOverlay()

is_HideDDOverlay()

is_DisableDDOverlay()

is_EnableDDOverlay()

is_GetDDOvlSurface()

is_SetColorMode()

198 379

322

446

393

383

384

389

319

© 2013 Thorlabs GmbH

4 Programming (SDK)

443

4.5.45 is_SetLED

USB 2.0 USB 2.0

Syntax

INT is_SetLED (HIDS hCam, INT nValue)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_IO() function
instead (see also Obsolete functions).

Using is_SetLED(), you can toggle the color of the LED on the back of the USB DCx camera housing.

Note

The is_SetLED() function is only supported by DCU22x and DCC1240x

Input parameters

hCam Camera handle

nValue

IS_SET_LED_OFF Switches LED to red.

IS_SET_LED_ON Switches LED to green.

IS_SET_LED_TOGGLE Toggles between red and green.

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_IO()

is_SetExternalTrigger()

280

379

280

327

© 2013 Thorlabs GmbH444

DCx Cameras

4.5.46 is_SetPixelClock

USB 2.0 USB 2.0

Syntax

INT is_SetPixelClock (HIDS hCam, INT Clock)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_PixelClock()
function instead (see also Obsolete functions).

is_SetPixelClock() sets the frequency used to read out image data from the sensor (pixel clock frequency).
Due to an excessive pixel clock for USB cameras, images may get lost during the transfer. If you change the pixel
clock on-the-fly, the current image capturing process will be aborted.

Note

Some sensors allow a higher pixel clock setting when if binning or subsampling is activated. If you set a higher
pixel clock and then reduce the binning/subsampling factors again, the driver will automatically select the highest
possible pixel clock for the new settings.

Attention

Changes to the image geometry or pixel clock affect the value ranges of the frame rate and exposure time. After
executing is_SetPixelClock(), calling the following functions is recommended in order to keep the defined
camera settings:

is_SetFrameRate()

is_Exposure()

If you are using the DCx Camera's flash function: is_IO()

Input parameters

hCam Camera handle

Clock Pixel clock frequency to be set (in MHz)

IS_GET_PIXEL_CLOCK Returns the current pixel clock

IS_GET_DEFAULT_PIXEL_CLK Returns the default pixel clock

IS_GET_PIXEL_CLOCK_INC Returns the pixel clock increment

Return values

When used with
IS_GET_PIXEL_CLOCK

Current setting

When used with
IS_GET_DEFAULT_PIXEL_CLK

Default setting

IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no driver
has been loaded.

IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed (no
camera connected or initialization error).

IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not match
the current camera model.

IS_INVALID_CAMERA_HANDLE Invalid camera handle

IS_INVALID_MODE Camera is in standby mode, function not allowed

IS_INVALID_PARAMETER One of the submitted parameters is outside the valid
range or is not supported for this sensor or is not
available in this mode.

IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly the
versions of the uc480_api.dll (API) and the driver file

294

379

329

216

280

© 2013 Thorlabs GmbH

4 Programming (SDK)

445

(uc480_usb.sys) do not match.

IS_NO_SUCCESS General error message

IS_NOT_CALIBRATED The camera does not contain any calibration data.

IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

IS_NULL_POINTER Invalid array

IS_SUCCESS Function executed successfully

IS_TIMED_OUT A timeout occurred. An image capturing process could
not be terminated within the allowable period.

Related functions

is_SetOptimalCameraTiming()

is_SetFrameRate()

is_Exposure()

is_SetAutoParameter()

is_SetBinning()

is_SetSubSampling()

is_AOI()

338

329

216

303

310

347

159

© 2013 Thorlabs GmbH446

DCx Cameras

4.5.47 is_ShowDDOverlay

USB 2.0 -

Syntax

INT is_ShowDDOverlay (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

In DirectDraw BackBuffer mode, is_ShowDDOverlay() displays the overlay, i.e. the most recent data stored in
the overlay buffer. With some graphics cards, overlay display may reduce the frame rate.

Input parameters

hCam Camera handle

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_HideDDOverlay()

is_DisableDDOverlay()

is_EnableDDOverlay()

is_GetDDOvlSurface()

is_SetDisplayMode()

198 379

393

383

384

389

322

© 2013 Thorlabs GmbH

4 Programming (SDK)

447

4.5.48 is_StealVideo

USB 2.0 -

Syntax

INT is_StealVideo (HIDS hCam, INT Wait)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

Using is_StealVideo(), you can initiate the extraction of an image from the DirectDraw image data stream.
The extracted image is written to the active image memory. The data includes the color format set with the
is_SetColorMode() function.

You can use the is_PrepareStealVideo() function to specify to remove the image from the DirectDraw
data stream or to copy it. If you set the copy option, the image will both be displayed using DirectDraw and copied
to the currently active image memory.

See also the Events in Live Mode figure in the Event handling section.

Attention

This function is not supported in Direct3D mode.

Input parameters

hCam Camera handle

Wait

IS_WAIT The function waits until the image save is complete.

IS_DONT_WAIT The function returns immediately.

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_PrepareStealVideo()

is_SetDisplayMode()

is_SetColorMode()

is_AllocImageMem()

is_SetImageMem()

is_SetAllocatedImageMem()

198 379

319

402

141

402

322

319

157

337

301

© 2013 Thorlabs GmbH448

DCx Cameras

4.5.49 is_UnlockDDMem

USB 2.0 -

Syntax

INT is_UnlockDDMem (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

Using is_UnlockDDMem(), you can unlock the image memory in the DirectDraw modes. This results in a refresh
of the BackBuffer contents on the screen.

Input parameters

hCam Camera handle

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_LockDDMem()

is_LockDDOverlayMem()

is_UnlockDDOverlayMem()

is_LockSeqBuf()

is_UnlockSeqBuf()

is_UpdateDisplay()

198 379

400

401

449

289

354

450

© 2013 Thorlabs GmbH

4 Programming (SDK)

449

4.5.50 is_UnlockDDOverlayMem

USB 2.0 -

Syntax

INT is_UnlockDDOverlayMem (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

Using is_UnlockDDOverlayMem(), you can unlock the overlay buffer in DirectDraw BackBuffer mode. This
results in an overlay buffer refresh on the screen, provided that the overlay display was enabled using
is_ShowDDOverlay() .

Input parameters

hCam Camera handle

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_LockDDOverlayMem()

is_UnlockDDOverlayMem()

is_LockDDMem()

is_UnlockDDMem()

is_LockSeqBuf()

is_UnlockSeqBuf()

is_UpdateDisplay()

198 379

446

401

449

400

448

289

354

450

© 2013 Thorlabs GmbH450

DCx Cameras

4.5.51 is_UpdateDisplay

USB 2.0 -

Syntax

INT is_UpdateDisplay (HIDS hCam)

Description

Attention

This function is obsolete and should not be used anymore. We recommend to use the is_DirectRenderer()
 function instead (see also Obsolete functions).

Using is_UpdateDisplay(), you can manually update the screen output in the DirectDraw modes. In normal
operation, the driver performs updates automatically. There may be cases, however, where a manual update of the
screen output is necessary.

Input parameters

hCam Camera handle

Return values

IS_SUCCESS Function executed successfully

IS_NO_SUCCESS General error message

Related functions

is_SetDisplayMode()

is_LockDDOverlayMem()

is_UnlockDDOverlayMem()

is_LockDDMem()

is_UnlockDDMem()

198 379

322

401

449

400

448

© 2013 Thorlabs GmbH

4 Programming (SDK)

451

4.6 Programming Notes

Note

Parameter Validity

Functions that refer to an initialized camera have the camera handle HIDS hCam as the first parameter. All
parameters that are set using these functions remain valid for as long as the handle is valid, that is, until you close
the corresponding camera or exit the program. The next time you open the camera, it is initialized with the defaults
again.

Attention

All input parameters of a function have to be initialized with valid values before the function is called; this also
applies to parameters that are not used. Variables can be preset with '0', for example. For unused parameters, the
NULL pointer has to be passed.

The uc480.h header file

The uc480.h header file contains all the definitions and constants needed for the uc480 API. After the installation
of the uc480 drivers you will find this file in the directory:

Windows: C:\Program Files\Thorlabs\DCx Cameras\Develop\include

Linux: /usr/include

Note

Note on older functions

If it is necessary to continue working with the older functions, it is possible to add the uc480_deprecated.h
header file additionally to the uc480.h header file. The uc480_deprecated.h header file contains all obsolete
function definitions and constants which are no longer part of the uc480.h header file.

See also:

Programming in C / C++

Programming in C#

Programming in VB.NET

Programming in Delphi

Programming with ActiveX

Thread programming

4.6.1 Programming in C/C++

For programming with the uc480 API, we suggest to use the C/C++ programming language. This programming
language offers efficient access to all functions of the uc480 API. Enabling access to image memory contents
through pointers, C/C++ is especially suitable for image processing applications.

Most of the uc480 sample programs were created in Microsoft Visual Studio using the C++ programming language.

Hint

We suggest that you keep the function libraries (DLL, AX and OCX files) in the default directory. After the
installation, these files reside e.g. under Window (32 bit) in C:\Windows\System32\.

Copying these files to other locations may result in version conflicts.

Required Files

In order to access the uc480 API, make sure to include the following files in your project:

Header file: uc480.h

Lib file: uc480_api.lib

Function library (DLL): uc480_Api.dll

In order to access the DCx Camera AVI functions, make sure to include the following files in your project:

Header file: uc480_tools.h

Lib file: uc480_tools.lib

451

452

452

452

453

453

© 2013 Thorlabs GmbH452

DCx Cameras

Function library (DLL): uc480_tools.dll

In order to access the uc480 DirectShow functions, make sure to include the following files in your project:

Header file: uc480CaptureInterface.h

DirectShow interface: uc480capture.ax

Note

Programming under Linux

In order to access the uc480 API, make sure to include the following files in your project:

Header file: uc480.h

Library: libuc480_api.so

4.6.2 Programming in C#

We suggest to use the C# programming language for the creation of visualization applications. While it is possible
to access image memory contents, doing so is more tedious than in C/C++ due to the 'managed code'. To access
image memory contents in C#, you can use 'unsafe code' or the 'Marshall class'. Some system-level functions,
such as Windows event handling, can be integrated using the Windows API.

The uc480 SDK includes sample programs for programming with Microsoft Visual Studio in the C# programming
language.

Required Files

In order to access the uc480 API in C#, make sure to include the following files in your project:

Header file: uc480.cs

Function library (DLL): uc480_Api.dll

In order to access the uc480 AVI functions in C#, make sure to include the following files in your project:

Header file: uc480_tools.cs

Function library (DLL): uc480_tools.dll

Hint

We suggest that you keep the function libraries (DLL, AX and OCX files) in the default directory. After the
installation, these files reside e.g. under Window (32 bit) in C:\Windows\System32\.

Copying these files to other locations may result in version conflicts.

4.6.3 Programming in VB.NET

We suggest to use the Visual Basic programming language for the creation of applications which are exclusively
used for visualization purposes. The access to image memory contents is extremely tedious due to the missing
pointer arithmetics.

We suggest to use the uc480 ActiveX component when programming in VB.Net. The uc480 SDK includes a
sample program for programming with Microsoft Visual Studio in the VB.NET programming language using the
uc480 ActiveX component.

The constants can be looked up in the uc480.h file.

4.6.4 Programming in Delphi

The uc480 SDK does not provide direct integration of the uc480 API for the Delphi programming language. In order
to use the uc480 API in Delphi, you need to create separate header files. We suggest to use the uc480 ActiveX
component (see also Programming with ActiveX) when programming in Delphi.

Attention

To use the uc480_api.dll in Delphi, the cdecl calling convention has to be used.

Hint

We suggest that you keep the function libraries (DLL, AX and OCX files) in the default directory. After the
installation, these files reside e.g. under Window (32 bit) in C:\Windows\System32\.

Copying these files to other locations may result in version conflicts.

453

453

© 2013 Thorlabs GmbH

4 Programming (SDK)

453

4.6.5 Programming with ActiveX

The uc480 SDK comes with an ActiveX component that allows you to use almost all functions of the DCx Camera.
Programming the uc480 ActiveX component is described in the uc480 ActiveX Manual. After the installation, you
will find this manual in the C:\Programs\uc480\Help directory.

Note

ActiveX is only available on Windows systems.

Required Files

In order to access the uc480 ActiveX component, make sure to include the following file in your project:

ActiveX control: uc480Cam.ocx

Hint

We suggest that you keep the function libraries (DLL, AX and OCX files) in the default directory. After the
installation, these files reside e.g. under Window (32 bit) in C:\Windows\System32\.

Copying these files to other locations may result in version conflicts.

4.6.6 Thread Programming

In general, the uc480 API is thread-safe. This means that the uc480 API can be accessed by multiple threads
simultaneously. Simultaneous attempts to call the same function are recognized and prevented by the driver.

Note

Multi-threading

We recommend that you call the following functions from one thread per camera in order to avoid unpredictable
behavior of the application.

is_InitCamera()

is_SetDisplayMode()

is_ExitCamera()

Attention

Using USB cameras under Windows

The following events require a Windows message loop. This message loop has to be executed by the thread that
loads the uc480 API. The message loop is usually provided by the application window. In some cases, the
message loop might not be created automatically (e.g. in console applications). In this case you will need to
implement the message loop yourself.

This applies to the following uc480 events:

IS_SET_EVENT_REMOVED

IS_SET_EVENT_REMOVAL

IS_SET_EVENT_DEVICE_RECONNECTED

IS_SET_EVENT_NEW_DEVICE

If no message loop exists, a USB camera will not be automatically detected after reconnecting.

273

322

213

© 2013 Thorlabs GmbH454

DCx Cameras

4.7 Lists

Complete list of all return values

Error codes of AVI functions

Linux: not supported functions

4.7.1 Complete List of All Return Values

No Error Description

-1 IS_NO_SUCCESS General error message

0 IS_SUCCESS Function executed successfully

1 IS_INVALID_CAMERA_HANDLE Invalid camera handle

Most of the uc480 SDK functions expect the
camera handle as the first parameter.

2 IS_IO_REQUEST_FAILED An IO request from the uc480 driver failed. Possibly
the versions of the uc480_api.dll (API) and the
driver file (uc480_usb.sys) do not match.

3 IS_CANT_OPEN_DEVICE An attempt to initialize or select the camera failed
(no camera connected or initialization error).

11 IS_CANT_OPEN_REGISTRY Error opening a Windows registry key

12 IS_CANT_READ_REGISTRY Error reading settings from the Windows registry

15 IS_NO_IMAGE_MEM_ALLOCATED The driver could not allocate memory.

16 IS_CANT_CLEANUP_MEMORY The driver could not release the allocated memory.

17 IS_CANT_COMMUNICATE_WITH_DRIVER Communication with the driver failed because no
driver has been loaded.

18 IS_FUNCTION_NOT_SUPPORTED_YET The function is not supported yet.

32 IS_INVALID_CAPTURE_MODE The function can not be executed in the current
camera operating mode (free run, trigger or
standby).

49 IS_INVALID_MEMORY_POINTER Invalid pointer or invalid memory ID

50 IS_FILE_WRITE_OPEN_ERROR File cannot be opened for writing or reading.

51 IS_FILEREAD_OPEN_ERROR The file cannot be opened.

52 IS_FILE_READ_INVALID_BMP_ID The specified file is not a valid bitmap file.

53 IS_FILE_READ_INVALID_BMP_SIZE The bitmap size is not correct (bitmap too large).

108 IS_NO_ACTIVE_IMG_MEM No active image memory available. You must set
the memory to active using the is_SetImageMem
() function or create a sequence using the
is_AddToSequence() function.

112 IS_SEQUENCE_LIST_EMPTY The sequence list is empty and cannot be deleted.

113 IS_CANT_ADD_TO_SEQUENCE The image memory is already included in the
sequence and cannot be added again.

117 IS_SEQUENCE_BUF_ALREADY_LOCKED The memory could not be locked. The pointer to the
buffer is invalid.

118 IS_INVALID_DEVICE_ID The device ID is invalid. Valid IDs start from 1 for
USB cameras, and from 1001 for GigE cameras.

119 IS_INVALID_BOARD_ID The board ID is invalid. Valid IDs range from 1
through 255.

120 IS_ALL_DEVICES_BUSY All cameras are in use.

122 IS_TIMED_OUT A timeout occurred. An image capturing process
could not be terminated within the allowable period.

123 IS_NULL_POINTER Invalid array

454

457

457

© 2013 Thorlabs GmbH

4 Programming (SDK)

455

No Error Description

125 IS_INVALID_PARAMETER One of the submitted parameters is outside the
valid range or is not supported for this sensor or is
not available in this mode.

127 IS_OUT_OF_MEMORY No memory could be allocated.

129 IS_ACCESS_VIOLATION An internal error has occured.

139 IS_NO_USB20 The camera is connected to a port which does not
support the USB 2.0 high-speed standard.

Cameras without a memory board cannot be
operated on a USB 1.1 port.

140 IS_CAPTURE_RUNNING A capturing operation is in progress and must be
terminated before you can start another one.

145 IS_IMAGE_NOT_PRESENT The requested image is not available in the camera
memory or is no longer valid.

148 IS_TRIGGER_ACTIVATED The function cannot be used because the camera is
waiting for a trigger signal.

151 IS_CRC_ERROR A CRC error-correction problem occurred while
reading the settings.

152 IS_NOT_YET_RELEASED This function has not been enabled yet in this
version.

153 IS_NOT_CALIBRATED The camera does not contain any calibration data.

154 IS_WAITING_FOR_KERNEL The system is waiting for the kernel driver to
respond.

155 IS_NOT_SUPPORTED The camera model used here does not support this
function or setting.

156 IS_TRIGGER_NOT_ACTIVATED The function is not possible as trigger is disabled.

157 IS_OPERATION_ABORTED The dialog was canceled without a selection so that
no file could be saved.

158 IS_BAD_STRUCTURE_SIZE An internal structure has an incorrect size.

159 IS_INVALID_BUFFER_SIZE The image memory has an inappropriate size to
store the image in the desired format.

160 IS_INVALID_PIXEL_CLOCK This setting is not available for the currently set
pixel clock frequency.

161 IS_INVALID_EXPOSURE_TIME This setting is not available for the currently set
exposure time.

162 IS_AUTO_EXPOSURE_RUNNING This setting cannot be changed while automatic
exposure time control is enabled.

163 IS_CANNOT_CREATE_BB_SURF The BackBuffer surface cannot be created.

164 IS_CANNOT_CREATE_BB_MIX The BackBuffer mix surface cannot be created.

165 IS_BB_OVLMEM_NULL The BackBuffer overlay memory cannot be locked.

166 IS_CANNOT_CREATE_BB_OVL The BackBuffer overlay memory cannot be created.

167 IS_NOT_SUPP_IN_OVL_SURF_MODE Not supported in BackBuffer Overlay mode.

168 IS_INVALID_SURFACE Back buffer surface invalid.

169 IS_SURFACE_LOST Back buffer surface not found.

170 IS_RELEASE_BB_OVL_DC Error releasing the overlay device context.

171 IS_BB_TIMER_NOT_CREATED The back buffer timer could not be created.

172 IS_BB_OVL_NOT_EN The back buffer overlay was not enabled.

173 IS_ONLY_IN_BB_MODE Only possible in BackBuffer mode.

174 IS_INVALID_COLOR_FORMAT Invalid color format

175 IS_INVALID_WB_BINNING_MODE Mono binning/mono sub-sampling do not support
automatic white balance.

© 2013 Thorlabs GmbH456

DCx Cameras

No Error Description

176 IS_INVALID_I2C_DEVICE_ADDRESS Invalid I2C device address

177 IS_COULD_NOT_CONVERT The current image could not be processed.

178 IS_TRANSFER_ERROR Transfer error. Frequent transfer errors can mostly
be avoided by reducing the pixel rate.

179 IS_PARAMETER_SET_NOT_PRESENT Parameter set is not present.

180 IS_INVALID_CAMERA_TYPE The camera type defined in the .ini file does not
match the current camera model.

181 IS_INVALID_HOST_IP_HIBYTE Invalid HIBYTE of host address

182 IS_CM_NOT_SUPP_IN_CURR_DISPLAYMODE The color mode is not supported in the current
display mode.

183 IS_NO_IR_FILTER No IR filter available

184 IS_STARTER_FW_UPLOAD_NEEDED The camera's starter firmware is not compatible
with the driver and needs to be updated.

185 IS_DR_LIBRARY_NOT_FOUND The DirectRenderer library could not be found.

186 IS_DR_DEVICE_OUT_OF_MEMORY Not enough graphics memory available.

187 IS_DR_CANNOT_CREATE_SURFACE The image surface or overlay surface could not be
created.

188 IS_DR_CANNOT_CREATE_VERTEX_BUFFER The vertex buffer could not be created.

189 IS_DR_CANNOT_CREATE_TEXTURE The texture could not be created.

190 IS_DR_CANNOT_LOCK_OVERLAY_SURFACE The overlay surface could not be locked.

191 IS_DR_CANNOT_UNLOCK_OVERLAY_SURFACE The overlay surface could not be unlocked.

192 IS_DR_CANNOT_GET_OVERLAY_DC Could not get the device context handle for the
overlay.

193 IS_DR_CANNOT_RELEASE_OVERLAY_DC Could not release the device context handle for the
overlay.

194 IS_DR_DEVICE_CAPS_INSUFFICIENT Function is not supported by the graphics hardware.

195 IS_INCOMPATIBLE_SETTING Because of other incompatible settings the function
is not possible.

196 IS_DR_NOT_ALLOWED_WHILE_DC_IS_ACTIVE A device context handle is still open in the
application.

197 IS_DEVICE_ALREADY_PAIRED The device is already paired.

198 IS_SUBNETMASK_MISMATCH The subnet mask of the camera and PC network
card are different.

199 IS_SUBNET_MISMATCH The subnet of the camera and PC network card are
different.

200 IS_INVALID_IP_CONFIGURATION The configuration of the IP address is invalid.

201 IS_DEVICE_NOT_COMPATIBLE The device is not compatible to the drivers.

202 IS_NETWORK_FRAME_SIZE_INCOMPATIBLE The settings for the image size of the camera are
not compatible to the PC network card.

203 IS_NETWORK_CONFIGURATION_INVALID The configuration of the network card is invalid.

204 IS_ERROR_CPU_IDLE_STATES_CONFIGURATION The configuration of the CPU idle has failed.

205 IS_DEVICE_BUSY The camera is busy ad cannot transfer the
requested image.

© 2013 Thorlabs GmbH

4 Programming (SDK)

457

4.7.2 Error Codes of AVI Functions

No. Error Description

300 IS_AVI_NO_ERR Function executed successfully.

301 IS_AVI_ERR_INVALID_FILE The file has no valid AVI format.

302 IS_AVI_ERR_NEW_FAILED No memory could be allocated for the AVI file.

303 IS_AVI_ERR_CREATESTREAM No AVI stream could be created.

304 IS_AVI_ERR_PARAMETER One of the submitted parameters is outside the
valid range.

305 IS_AVI_ERR_NO_CODEC_AVAIL The maximum number of instances allowed in this
system has been reached. It is not possible to
create another instance.

306 IS_AVI_ERR_INVALID_ID The indicated AVI instance could not be found.
Either the AVI ID is invalid or the instance has
already been deleted using isavi_ExitAVI() .

307 IS_AVI_ERR_COMPRESS The last image compression failed.

309 IS_AVI_ERR_CAPTURE_RUNNING Another capturing operation is in progress or an AVI
file is still open.

310 IS_AVI_ERR_CAPTURE_NOT_RUNNING No capturing operation is running or no AVI file is
opened.

311 IS_AVI_ERR_PLAY_RUNNING A playback is already running.

312 IS_AVI_ERR_PLAY_NOT_RUNNING No playback is running.

313 IS_AVI_ERR_WRITE_INFO The AVI file could not be modified.

314 IS_AVI_ERR_INVALID_VALUE The q parameter is outside the range of 1…100.

315 IS_AVI_ERR_ALLOC_MEMORY No memory could be allocated.

316 IS_AVI_ERR_INVALID_CM The submitted color mode is not supported for AVI
capturing.

317 IS_AVI_ERR_COMPRESSION_RUN The current image could not be processed since
compression is still in progress.

318 IS_AVI_ERR_INVALID_SIZE The submitted size is invalid.

319 IS_AVI_ERR_INVALID_POSITION The submitted position is invalid.

320 IS_AVI_ERR_INVALID_UEYE No DCx camera was found.

321 IS_AVI_ERR_EVENT_FAILED The event could not be initialized. The Windows
SetEvent function failed.

4.7.3 Linux: Not Supported Functions

The following uc480 API functions are not supported by the Linux driver version 4.20 and older:

is_DirectRenderer()

is_GetColorDepth()

is_GetDC()

is_ReleaseDC()

is_RenderBitmap()

is_SetDisplayMode()

is_SetDisplayPos()

is_SetHwnd()

is_SetOptimalCameraTiming()

is_UpdateDisplay()

362

198

237

388

403

297

322

325

433

338

450

© 2013 Thorlabs GmbH458

DCx Cameras

5 Specifications
This chapter lists the specifications of the available DCx camera models.

Model comparison

Camera and sensor data

Mechanical specifications

Electrical specifications

Accessories

459

460

472

487

497

© 2013 Thorlabs GmbH

5 Specifications

459

5.1 Model Comparison
The following table outlines the key features of DCx camera series for direct comparison (see also the DCx
Camera Family chapter).

DCC1545M

DCC1645C

DCU223x

DCU224x
DC1240x DC3240x

Sensor Type CMOS CCD CMOS CMOS

Objective Mount CS (C*) C C C

EMC compliance
CE B

FCC B

CE A

FCC A

CE B

FCC A

CE A

FCC A

WxHxD [mm]

(CCD size)
44 x 44 x 25.6

32 x 34 x 30.2
(37.2)

32 x 34 x 30.2 29 x 29 x 29

Mounting holes

bottom

top

side

1
0
0

2
3
3

2
3
3

2
3
3

Thread diameter 1/4" (#8-32, M4)*) #8-32, M4 #8-32, M4 1/4" (#8-32, M4)*)

Adjustable flange back
distance

+ - - -

IP protection class 30 30 30 30

Interface USB 2.0 USB 2.0 USB 2.0
USB 3.0

USB 2.0

Power supply USB USB USB USB

Lockable connector - + + +

I/O connector 10-pin connector 9-pin micro D-SUB 9-pin micro D-SUB 8-pin HR25

Optocoupler for I/O -/- 1/1 1/1 1/1

Optocoupler speed - 100 µs 100 µs High (trigger)

Max. cable length (m) 5 5 5 5

Dig. I/O/GPIO 0/0/0 1/1/0 1/1/0 1/1/2

PWM - - - +

RS-232 - - - + (GPIO)

I2C bus - - - -

Hot pixel correction Software Software Software Hardware

Color calculation Software Software Software Hardware

Hardware: Dig.
Subsampling/Binning

- - - +

Bit depth: Internal/
transferred

8/8 8/8 8/8 16/16

LUT: Internal/ transferred - - - 12/12

Max. pixel clock (MHz) at
full resolution

43 43 43 480

Max. data rate (MBytes/s) 38 38 38 300

*) with supplied adapter

14

509

© 2013 Thorlabs GmbH460

DCx Cameras

5.2 Model Naming Conventions
In the table below, you will find an overview of all the models in the DCx camera series.

DC X ## # X

Short for "Digital Camera

C CMOS

U CCD

Sensor and shutter type

12
15/16
22
32

CMOS Global Shutter
CMOS Rolling Shutter
CCD Progressive Scan
CMOS Global Shutter, USB3

Resolution

3
4, 40, 45

XGA
SXGA

1024 x 768 (0.78 MPixel)
1280 x 1024 (1.30 MPixel)

Color / Mono

M
C
N

Monochrome sensor
Color sensor
Near Infrared sensor

5.3 Camera and Sensor Data
In this chapter the technical properties of the sensors are listed. You can look up e.g. binning factors. Also you will
find the parameters for the different interfaces.

Cameras with CMOS sensors

DCC1240x / DCC3240x

DCC1545M

DCC1645C

Cameras with CCD sensors

DCU223x

DCU224x

Note:

The diagrams shown in the sensor specifications section indicate the relative sensitivities of the DCx Cameras in
the spectral range. Therefore, the characteristic curves cannot be compared to each other.

461

464

466

468

470

© 2013 Thorlabs GmbH

5 Specifications

461

5.3.1 DCC1240x / DCC3240x

Sensor specification

Sensor type CMOS

Shutter system Electronic global and rolling shutter

Characteristic Linear

Readout mode Progressive scan

Resolution class SXGA

Resolution 1280 x 1024 pixels (1.3 Megapixel)

Aspect ratio 5:4

Bit depth 10 bits *8

Optical sensor class 1/1.8 inch

Exact sensitive area 6.784 mm x 5.427 mm

Exact optical sensor diagonal 8.69 mm (1/1.84 inch)

Pixel size 5.30 µm, square

Micro lens shift 12°

Sensor name, monochrome e2v EV76C560ABT

Sensor name, color e2v EV76C560ACT

Sensor name, NIR *7 e2v EV76C661ABT

Special features Automatic hotpixel correction in the sensor, see is_HotPixel()

Multi AOI with 2 or 4 AOI, see Camera basics: AOI

Sequence AOI

Sensor internal image scaler, downscaling by factor 1...4, see
is_SetSensorScaler() and uc480 Viewer: Size)

Allows to switch between global and rolling shutter readout, see
is_DeviceFeature()

Gain

Monochrome model (master gain) 4x

Color model (master / RGB) 4x / 3.96x

Gain boost 2x

Camera timing DCC1240x DCC3240x

Pixel clock range (allowed/
recommended)

MHz 7 to 35 / 35*1 5 to 85 / 85*1

Max. pixel clock with subsampling/
binning

MHz 85*1 85*1

Frame rate (freerun mode) fps 25.8*2 60.0*2

Frame rate (trigger mode, 1 ms
exposure)

fps 24.7*2 56.9*2

Exposure time in freerun mode ms 0.009*2 to 2000*3 0.009*2 to 2000*3

Exposure time in trigger mode ms 0.009*2 to 2000*3 0.009*2 to 2000*3

AOI

Mode Horizontal + Vertical*4

AOI image width, step width Pixels 16 to 1280, 4 16 to 1280, 4

AOI image height, step width Pixels 4 to 1024, 2 4 to 1024, 2

AOI position grid horizontal, vertical Pixels 2, 2 2, 2

AOI frame rate, 640 x 480 pixels
(VGA)

fps 52.0 123.0

AOI frame rate, 320 x 240 pixels
(CIF)

fps 98.0 229.0

41

25

260

35

343 97

192

© 2013 Thorlabs GmbH462

DCx Cameras

Binning

Mode Horizontal + Vertical*4

Method H + V combined, mono/color binning,
H: additive. V: averaging

Factors 2x

Frame rate with 2x binning, 640 x
480 pixels (VGA)

fps 60.0 64.0

Subsampling

Mode Scaler

Hardware trigger

Mode Asynchronous Asynchronous

Trigger delay with rising edge µs 20 ±0.25 3 ±0.25*6

Trigger delay with falling edge µs 33 ±0.25 21 ±0.25*6

Additive trigger delay (optional) µs 15 µs...4 s 15 µs...4 s

Power consumption*5

W 0.3 to 0.7 1.3*5

** Not yet defined.
*1 The maximum possible pixel clock frequency depends on the PC hardware used.
*2 Requires maximum pixel clock frequency.
*3 Requires minimum pixel clock frequency.
*4 Use of this function increases the frame rate.
*5 The power consumption depends on the sensor model and the pixel clock setting.
*6 Not yet confirmed
*7 DCC3240N only
*8 Only for USB3.0 transmission (DCC3240x), with USB2.0 - bit depth is 8 bit.

Please see also the DCC1240x / DCC3240x Application Notes chapter.63

© 2013 Thorlabs GmbH

5 Specifications

463

Relative sensor sensitivity

Sensor sensitivity of the DCC1240M (monochrome) / DCC3240x (monochrome and NIR)

Sensor sensitivity of the DCC1240C / DCC3240C

© 2013 Thorlabs GmbH464

DCx Cameras

5.3.2 DCC1545M

Sensor specification

Sensor type CMOS

Shutter system Electronic rolling shutter

Readout mode Progressive scan

Resolution class SXGA

Resolution 1280 x 1024 pixels (1.31 Megapixel)

Aspect ratio 5:4

Bit depth 10 bits

Optical sensor class 1/2 inch

Exact sensitive area 6.656 x 5.325 mm

Exact optical sensor diagonal 8.52 mm (1/1.88 inch)

Pixel size 5.20 µm, square

Sensor name Aptina MT9M001 (monochrome)

Gain

Monochrome model (master gain) 13x

Analog gain boost 1.5x

Camera timing

Pixel clock range MHz 5 to 43*1

Max. pixel clock with subsampling/
binning

MHz 48*1

Frame rate (freerun mode) fps 25.0*2

Frame rate (trigger mode, 1 ms
exposure)

fps 25.0*2

Exposure time in freerun mode ms 0.037*2 to 983*2

Exposure time in trigger mode ms 0.037*2 to 983*2

AOI

Mode Horizontal*4 + Vertical*4

AOI image width, step width Pixels 32 to 1280, 4

AOI image height, step width Pixels 4 to 1024, 2

AOI position grid horizontal, vertical Pixels 4, 2

AOI frame rate, 640 x 480 pixels (VGA) fps 84

Binning

Mode none

Subsampling

Mode Horizontal*4 + Vertical*4

Method H + V: Color subsampling

Factor 2x, 4x, 8x

Frame rate w/ 2x subsampling, 640 x
480 pixels

fps 94

Frame rate w/ 4x subsampling, 320 x
240 pixels

fps 258

Hardware trigger

Mode Asynchronous

Trigger delay with rising edge µs 22.0 ±0.25

Trigger delay with falling edge µs 40.3 ±0.25

41

© 2013 Thorlabs GmbH

5 Specifications

465

Additive trigger delay (optional) µs 15 µs...4 s

Power consumption*5

W 0.5 to 1.0

*1 The maximum possible pixel clock frequency depends on the PC hardware used.
*2 Requires maximum pixel clock frequency.
*3 Requires minimum pixel clock frequency.
*4 Use of this function increases the frame rate.
*5 The power consumption depends on the sensor model and the pixel clock setting.

Please see also the DCC1545M Application Notes chapter.

Relative sensor sensitivity

Sensor sensitivity of the DCC1545M (monochrome)

66

© 2013 Thorlabs GmbH466

DCx Cameras

5.3.3 DCC1645C

Sensor specification

Sensor type CMOS

Shutter system Electronic rolling shutter

Characteristic Linear

Readout mode Progressive scan

Resolution class SXGA

Resolution 1280 x 1024 pixels (1.31 Megapixel)

Aspect ratio 5:4

Bit depth 10 bits

Optical sensor class 1/3 inch

Exact sensitive area 4.608 x 3.686 mm

Exact optical sensor diagonal 5.90 mm (1/2.71 inch)

Pixel size 3.60 µm, square

Micro lens shift 25°

Sensor name Aptina MT9M131 (color)

Gain

Color model (master/RGB) 4.27x / 3.1x

Analog gain boost 2.0x

Camera timing

Pixel clock range MHz 5 to 40*1

Max. pixel clock with subsampling/binning MHz 40*1

Frame rate (freerun mode) fps 25.0*2

Frame rate (trigger mode, 1 ms exposure) fps 24.9*2

Exposure time in freerun mode ms 0.037*2 to 10122*3

Exposure time in trigger mode ms 0.037*2 to 10122*3

AOI

Mode Horizontal*4 + Vertical*4

AOI image width, step width Pixels 32 to 1280, 4

AOI image height, step width Pixels 4 to 1024, 2

AOI position grid horizontal, vertical Pixels 4, 2

AOI frame rate, 1280 x 720 pixels (HD
720)

fps 34

AOI frame rate, 800 x 600 pixels (SVGA) fps 61

Binning

Mode none

Subsampling

Mode Horizontal*4 + Vertical*4

Method H + V: Color subsampling

Factor 2x, 4x

Frame rate w/ 2x subsampling, 640 x 480
pixels

fps 89

Frame rate w/ 4x subsampling, 320 x 240
pixels

fps 263

Hardware trigger

Mode Asynchronous

41

25

© 2013 Thorlabs GmbH

5 Specifications

467

Trigger delay with rising edge µs 180.9 ±0.25

Trigger delay with falling edge µs 199.3 ±0.25

Additive trigger delay (optional) µs 15 µs...4 s

Power consumption*5

W 0.3 to 0.8

*1 The maximum possible pixel clock frequency depends on the PC hardware used.
*2 Requires maximum pixel clock frequency.
*3 Requires minimum pixel clock frequency.
*4 Use of this function increases the frame rate.
*5 The power consumption depends on the sensor model and the pixel clock setting.
Please see also the DCC1645C Application Notes chapter.

Relative sensor sensitivity

Sensor sensitivity of the DCC1645C

66

© 2013 Thorlabs GmbH468

DCx Cameras

5.3.4 DCU223x

Sensor specification

Sensor type CCD

Shutter system Electronic global shutter

Characteristic Linear

Readout mode Progressive scan

Resolution class XGA

Resolution 1024 x 768 pixels (0.79 Megapixel)

Aspect ratio 4:3

Bit depth 12 bits

Optical sensor class 1/3 inch

Exact sensitive area 4.762 x 3.571 mm

Exact optical sensor diagonal 5.95 mm (1/2.69 inch)

Pixel size 4.65 µm, square

Sensor name, monochrome Sony ICX204AL

Sensor name, color Sony ICX204AK

Gain

Monochrome model (master gain) 10.47x

Color model (master/RGB) 7.59x/4.0x

Analog gain boost 2.0x (monochrome model only)

Camera timing

Pixel clock range (allowed/
recommended)

MHz 5 to 30 / 10 to 20*1

Pixel clock for optimal image quality MHz 15*1

Max. pixel clock with subsampling/
binning

MHz 30*1

Frame rate (freerun mode) fps 30.0*2

Frame rate (trigger mode, 1 ms
exposure)

fps 28.7*2

Exposure time in freerun mode ms 0.030*2 to 773*3

Exposure time in trigger mode ms 0.030*2 to 10 min*3

AOI

Mode Horizontal + Vertical*4

AOI image width, step width Pixels 16 to 1024, 4

Mono: AOI image height, step width Pixels 120 to 768, 1

Color: AOI image height, step width Pixels 120 to 768, 2

Mono: AOI position grid horizontal,
vertical

Pixels 1, 1

Color: AOI position grid horizontal,
vertical

Pixels 2, 2

AOI frame rate, 800 x 600 pixels
(SVGA)

fps 37

AOI frame rate, 640 x 480 pixels
(VGA)

fps 45

AOI frame rate, 320 x 240 pixels (CIF) fps 78

Binning

Mode Vertical*4

41

© 2013 Thorlabs GmbH

5 Specifications

469

Method V: Monochrome binning, additive

Factor 2x, 3x, 4x

Frame rate with 2x binning, 1024 x
384 pixels

fps 53

Frame rate with 3x binning, 1024 x
256 pixels

fps 71

Frame rate with 4x binning, 1024 x
192 pixels

fps 85

Subsampling

Mode -

Hardware trigger

Mode Asynchronous

Trigger delay with rising edge µs 39.5 ±2.6

Trigger delay with falling edge µs 57.9 ±2.6

Additive trigger delay (optional) µs 15 µs...4 s

Power consumption*5

W 1.0 to 1.7

*1 The maximum possible pixel clock frequency depends on the PC hardware used.
*2 Requires maximum pixel clock frequency.
*3 Requires minimum pixel clock frequency.
*4 Use of this function increases the frame rate.
*5 The power consumption depends on the sensor model and the pixel clock setting.

Please see also the DCU223x Application Notes chapter.

Relative sensor sensitivity

Sensor sensitivity of the DCU223M (monochrome) Sensor sensitivity of the DCU223C (Color)

66

© 2013 Thorlabs GmbH470

DCx Cameras

5.3.5 DCU224x

Sensor specification

Sensor type CCD

Shutter system Electronic global shutter

Characteristic Linear

Readout mode Progressive scan

Resolution class SXGA

Resolution 1280 x 1024 pixels (1.31 Megapixel)

Aspect ratio 5:4

Bit depth 12 bits

Optical sensor class 1/2 inch

Exact sensitive area 5.952 x 4.762 mm

Exact optical sensor diagonal 7.62 mm (1/2.1 inch)

Pixel size 4.65 µm, square

Sensor name, monochrome Sony ICX205AL

Sensor name, color Sony ICX205AK

Gain

Monochrome model (master gain) 13.66x

Color model (master/RGB) 8.9/4.0x

Analog gain boost 2.0x (monochrome model only)

Camera timing

Pixel clock range (allowed/
recommended)

MHz 5 to 30 / 10 to 20*1

Pixel clock for optimal image quality MHz 14*1

Max. pixel clock with subsampling/
binning

MHz 30*1

Frame rate (freerun mode) fps 15.0*2

Frame rate (trigger mode, 1 ms
exposure)

fps 17.0*2

Exposure time in freerun mode ms 0.066*2 to 1360*3

Exposure time in trigger mode ms 0.066*2 to 10 min*3

AOI

Mode Horizontal + Vertical*4

AOI image width, step width Pixels 16 to 1280, 4

Mono: AOI image height, step width Pixels 120 to 1024, 1

Color: AOI image height, step width Pixels 120 to 1024, 2

Mono: AOI position grid horizontal,
vertical

Pixels 1, 1

Color: AOI position grid horizontal,
vertical

Pixels 2, 2

AOI frame rate, 1024 x 768 pixels (XGA) fps 18

AOI frame rate, 640 x 480 pixels (VGA) fps 28

AOI frame rate, 320 x 240 pixels (CIF) fps 38

Binning

Mode Vertical*4

Method V: Monochrome binning, additive

41

© 2013 Thorlabs GmbH

5 Specifications

471

Factor 2x, 3x, 4x

Frame rate with 2x binning, 1280 x 512
pixels

fps 23

Frame rate with 3x binning, 1280 x 340
pixels

fps 28

Frame rate with 4x binning, 1280 x 256
pixels

fps 31

Subsampling

Mode Vertical*4

Method V: Color subsampling

Factor 4x

Frame rate w/ 4x subsampling, 1280 x
256 pixels

fps 31

Hardware trigger

Mode Asynchronous

Trigger delay with rising edge µs 39.9 ±2.5

Trigger delay with falling edge µs 57.7 ±2.5

Additive trigger delay (optional) µs 15 µs...4 s

Power consumption*5

W 1.1 to 2.1

*1 The maximum possible pixel clock frequency depends on the PC hardware used.
*2 Requires maximum pixel clock frequency.
*3 Requires minimum pixel clock frequency.
*4 Use of this function increases the frame rate.
*5 The power consumption depends on the sensor model and the pixel clock setting.

Please see also the DCU224x Application Notes chapter.

Relative sensor sensitivity

Sensor sensitivity of the DCU224M (monochrome) Sensor sensitivity of the DCU224C (color)

66

© 2013 Thorlabs GmbH472

DCx Cameras

5.4 Mechanical Specifications

DCU223x, DCU224x

DCC1545M, DCC1645C

DCC1240x, DCC3240x

General

Flange back distance

Position accuracy of the sensor

Filter glasses

Ambient conditions

473

476

474

477

480

480

486

© 2013 Thorlabs GmbH

5 Specifications

473

5.4.1 DCU223x, DCU224x

© 2013 Thorlabs GmbH474

DCx Cameras

5.4.2 DCC1240x

© 2013 Thorlabs GmbH

5 Specifications

475

5.4.3 DCC3240x

© 2013 Thorlabs GmbH476

DCx Cameras

5.4.4 DCC1545M, DCC1645C

© 2013 Thorlabs GmbH

5 Specifications

477

5.4.5 Flange Back Distance

Calculating the flange back distance

Maximum immersion depth for lenses

5.4.5.1 Calculating the Flange Back Distance

To correctly determine the flange back distance of a DCx camera, you need to consider the distance between the
lens flange and the active area of the sensor and, additionally, the type and thickness of any materials inserted into
the optical path.

The "distance in air" between the threaded flange and the active area is 17.526 mm with C-mount lenses and
12.526 mm with CS-mount lenses.

This "mechanical distance" can change due to the material-specific refractive index of the inserted materials. The
glass cover of the sensor and all filters inserted into the optical path (see Filter types table) must be taken into
account in the calculation.

Calculating the flange back distance (schematic illustration)

Designation Description

a Distance from threaded flange to active sensor area (flange back distance)
17.526 mm*1 for C-mount
12.526 mm*1 for CS-mount

x Distance from threaded flange to PCB

e Distance from active sensor area to PCB

d Thickness of the glass cover of the sensor

f Filter thickness (optional)

n Refractive index

h Maximum sensor height above the PCB

*1 This distance describes the equivalent in air (see introduction above)

477

478

480

© 2013 Thorlabs GmbH478

DCx Cameras

Hint

You can use the following formula to calculate the mechanical flange back distance:

The tolerances for the position accuracy of DCx camera sensors are given in the Position accuracy chapter.

Calculating the flange back distance for DCx Cameras with C-mount

Camera model
Thickness sensor

glass [mm]

Active sensor
area to PCB

[mm]

Flange to active
sensor area

without filter glass
[mm]

Flange to active
sensor area with
filter glass [mm]

Sensor height
above the PCB

[mm]

Designation d e x' x h

CMOS

DCC1240x /
DCC3240x

0.550 1.130 18.840 19.190 2.530

CCD

DCU223x 0.750 2.810 20.590 20.930 4.780

DCU224x 0.750 2.810 20.590 20.930 4.830

Calculation example: UI-154x-xx with IR-cut filter

(a = 17.526 mm, d = 0.525 mm, nGlass = 1.50, f = 1mm, nFilter = 1.53; see Filter types table)

Calculating the flange back distance for DCC1545M and DCC1645C cameras with CS-mount

Note

For these cameras with CS-mount, the flange back distance is only 12.526 mm.

Camera model
Thickness

sensor
glass [mm]

Active sensor
area to PCB

[mm]

Threaded
flange to

active
sensor area

Flange to active
sensor area
without filter
glass[mm]

Flange to active
sensor area with
filter glass [mm]

Sensor height
above the PCB

[mm]

Designation d e a x x' h

DCC1545M 0.525 1.270 13.23 15.95 17.50 2.480

DCC1645C 0.550 1.400 13.10 16.08 17.63 2.500

5.4.5.2 Maximum Immersion Depth for Lenses

Some C-mount lenses reach deep into the camera flange. This may cause the lens to push against the back of the
filter glass inside the camera or even make it impossible to screw in the lens.

The table below indicates the maximum possible immersion depth for each DCx camera model. The actual
immersion depth of a lens is given in the relevant data sheet. As lens parts with a small diameter are allowed to
reach deeper into the camera flange, the immersion depths are specified based on the diameter.

Beside the immersion depth also the back focal length has to be considered, that means the distance between the
last lens and the sensor (named "bfl" in the image below). The back focal length can be calculated for C-mount with
the following formula:

xbfl 526,17

x stands for the maximum immersion depth (see table below).

480

461

468

470

480

464

466

© 2013 Thorlabs GmbH

5 Specifications

479

Camera front (sectional view)

Note

Front Panel of the DCU223x / DCU224x housing

Models introduced before 2008 have a different front panel. On these models, the filter glass is held in the C-mount
lens connector by two screws. This front panel version is indicated by (V2) in the table below.

Camera Type
Thread
depth

for diameter
at lens end

resulting max. immersion
depth (mm)

min. required back focal
length (mm)

(Ø A, B, C
in mm)

CMOS CCD CMOS CCD

DCU223X

DCU224X

DCC1240X

C-mount 5 mm

24.0 6.9 6.4

6.4 6.920.0 9.4 8.9

14.1 11.1 10.6

DCU223X
(V2)

DCU224X
(V2)

C-mount 5 mm

24.0 - 8.4

- 7.817.1 - 9.2

14.1 - 9.7

DCC1545M

DCC1645C

CS-mount 4 mm
24.0 6.1 -

4.9 -
14.6 7.6 -

C-mount with
extension
ring

4 mm*1
22.0*1 11.1 -

14.6*1 12.6 -

DCC3240x C-mount 5 mm

24.0 7.2 -

6.8 -20.4 9.7 -

14.6 10.7 -

*1 May vary depending on the inside diameter of the extension ring used

*2 Without IR cut filter

Note

The data given in the table include the following tolerances as a safety clearance:

Immersion depth: 0.2 mm

Diameter: 0.2 mm

© 2013 Thorlabs GmbH480

DCx Cameras

5.4.6 Position Accuracy of the Sensor

The following illustration shows the tolerance margins of the sensor position relative to the camera housing. A
maximum error in all directions (rotation, translation) cannot occur simultaneously.

Position accuracy of the sensor (1)

Position accuracy of the sensor (2)

Position accuracy inside the camera housing, in each direction ±0.3 mm

Horizontal/vertical rotation (α) ±1.0

Translational rotation (β) ±1.0

Flange back distance ±0.05 mm

Note

C-mount lenses can also be subject to inaccuracies of the flange back distance. The tolerance usually is ±0.05
mm. In some cases, however, the inaccuracies of camera and lens might add up, resulting in a total error > 0.05
mm.

5.4.7 Filter Glasses

Filter types

Mounting the filter

Cleaning the filter glasses

5.4.7.1 Filter Types

Each DCx camera has a filter glass in the front flange to prevent the entry of dust particles. Color cameras by
default use an IR cut filter, which is required to ensure correct color rendering. The default filter glass in
monochrome cameras has no filter effect. Every camera model is available with different filter variants such as
daylight cut filters (type DL).

The following table shows an overview of the different optical filters used in the DCx Cameras:

Filter type Name
Refractive index

(nFilter)
Glass type

Thickness
(f)

Cut-off

wavelength
Non-

reflective

IR cut filter
(old)

BG 1.53 BG40 1 mm 650 nm -

IRcut filter
(new)

HQ 1.53 D263 1 mm 650 nm On one side

Daylight cut
filter

DL 1.53 RG665 1 mm 695 nm -

Glass GL 1.53 D263 1 mm 380 nm On both sides

480

484

485

© 2013 Thorlabs GmbH

5 Specifications

481

Notes

All sensors have a D263 type cover glass. This glass is opaque to wavelengths below 330 nm.

You can tell the filter type from visually by its coloration:

Reddish glass: HQ filter

Bluish glass: BG filter

Opaque glass: DL filter

Plain glass: GL filter

New DCx color cameras use an IR cut filter of the type HQ by default. This filter offers an improved accuracy of
the infrared content. HQ filters achieve a higher image brightness and better color rendering compared with the
BG filter.

uc480 drivers of version V3.24 and higher determine automatically which the IR filter is used in a camera. The
corresponding color correction is selected automatically.

Infrared cut filter (type BG)

BG filter

102

© 2013 Thorlabs GmbH482

DCx Cameras

Infrared cut filter (type HQ)

HQ filter

Daylight cut filter (type DL)

DL cut filter

© 2013 Thorlabs GmbH

5 Specifications

483

Plain glass filter (type GL)

Glass filter

Note

A different scale is used for the Y-axis of the glass filter curve, to show the curves between 400 nm and 1100 nm
better.

© 2013 Thorlabs GmbH484

DCx Cameras

5.4.7.2 Mounting the Filter

Attention

It is recommended to have the filter changed under clean room conditions, otherwise dust might enter the sensor
area and become visible in images.

When completely removing the adjustment ring and the filter glass, the rubber gasket should also be removed. Due
to expansion of the rubber gasket during installation, it's difficult to reinstall then the filter glass.

The threaded ring presses the filter glass on a rubber gasket. A properly mounted threaded ring will seal off the
sensor. The threaded ring is screwed into the adjusting ring from the front with a torque of 0.2 Nm.

Threaded ring

Notes

A special tool is required for adjusting the threaded ring!

Some DCx camera models have a different design with a separate filter glass that is secured by two screws.

© 2013 Thorlabs GmbH

5 Specifications

485

5.4.7.3 Cleaning the Filter Glasses

When using the DCx camera with it's lens removed, the filter glass may become soiled from outside. This might be
visible in captured images. In such case, the filter glass needs cleaning.

Note

It is strongly recommended to return the cameras to manufacturer for professional cleaning.The manufacturer is
not liable for any damage resulting from cleaning the filter glasses. This even applies if the following instructions
have been observed.

Instructions for cleaning DCx camera filter glasses

The filter glasses can be cleaned only from outside. If remove the filter glasses, the sensor might become soiled.
Thorlabs is not liable for any damage to the sensor resulting from removal of the filter glasses.

First, remove dirt particles on the glass using compressed air. Do not use compressed air from compressors or
spray cans since it often contains oil droplets or droplets of other liquids. For best results, use purified nitrogen
from nitrogen bottles.

Only use lint-free wipes or cotton-free swabs for cleaning. Never touch the filter glasses with bare fingers - it's
mostly difficult to remove fingerprints completely!

We recommend to use pure alcohol for cleaning. 100% isopropyl alcohol evaporates without leaving any
residues. Only add small quantities of alcohol to the wipe. Never pour alcohol directly onto the camera.

Attention

Never use cleaning agents containing acetone for cleaning the filter glasses! Acetone may damage the filter glass
coating and may deteriorate the optical quality of the glasses.

Cameras with fixed filter glass

Use a wipe to remove dust particles in a single sweep over the edge of the filter glass (see figure below).

Cleaning fixed DCx filter glasses

Cameras with replaceable filter glass

Use a wipe to remove dust particles in a circular sweep (see figure below).

Cleaning interchangeable DCx filter
glasses

© 2013 Thorlabs GmbH486

DCx Cameras

5.4.8 Ambient Conditions

Attention

Avoid high air humidity levels and rapid temperature changes when using DCx Cameras.

Temperatures below +4 °C (39 °F) combined with excessive relative air humidity levels can cause icing.

At ambient temperatures above 45 °C (113 °F), the image quality could be reduced due to increased thermal
noise. It is recommended to mount the camera to a heat-dissipating unit when high ambient temperatures
prevail.

Note

The temperature values given above refer to the ambient temperature. The internal camera temperature is usually
higher than the ambient temperature and must not exceed than 70 °C (158 °F).

Min. Max.

Ambient temperature -5

23

50

122

°C

°F

Storage temperature -20

-4

60

140

°C

°F

Relative humidity*1 20 80 %

*1 Non-condensing

Note

Non-condensing means that the relative air humidity must be below 100 %. Otherwise, moisture will form on the
camera surface. If, for example, air has a relative humidity of 40 % at 35 °C (95 °F), the relative humidity will
increase to over 100 % if the air cools down to 19.5 °C (67 °F); condensation begins to form.

Vibration and shock resistance

Vibration and shock resistance of the USB DCx Cameras were tested as specified in DIN EN 60068-2-6(1996-05),
DIN EN 60068-2-27(1995-03) and DIN EN 60068-2-29(1995-03). The mechanical shock was at 80 g; the vibration
testing was performed with sinusoidal vibration at a frequency between 30 Hz-500 Hz and an amplitude of 10 g.

© 2013 Thorlabs GmbH

5 Specifications

487

5.5 Camera Interface

This section of the manual contains information on connecting the cameras and wiring IOs.

For information on a camera's power consumption, please refer to the Camera and sensor data section.
This section contains information on all camera models sorted by sensor type.

DCU223x, DCU224x, DCC1240x

DCC3240x

EEPROM Specification

5.5.1 DCU223x, DCU224x, DCC1240x

In this section the additional digital input / output of these cameras is described in detail:

I/O Connector - Pin Assignment

Digital Input (Trigger) Circuit

Digital Output (Flash) Circuit

5.5.1.1 I/O Connector - Pin Assignment

Attention

USB cables with non-standard connectors must be connected to the camera first and then to the PC. Otherwise the
camera might not be recognized correctly.

9-pin micro D-Sub socket

Pin Description

DCU22xX / DCC1240X

Micro D-Sub socket male, camera
rear view

1 Digital output (-)

2 Digital input (+)

3 Shielding

4 USB power supply (VCC) 5 V

5 USB ground (GND)

6 Digital output (+)

7 Digital input (-)

8 USB data (+)

9 USB data (-)

Pin assignment of the CAB-DCU-Tx cable for USB 2.0, trigger and flash

Pin Description Cable color

DCU22xX / DCC1240X

 Micro D-Sub connector female,
connecting side view

1 Digital output (-) green

2 Digital input (+) white

6 Digital output (+) yellow

7 Digital input (-) brown

For a comprehensive list of all cables and connectors available for DCU22xX / DCC1240X cameras, please refer to
the DCU22xX / DCC1240X Accessories section.

460

487

491

496

487

488

489

497

© 2013 Thorlabs GmbH488

DCx Cameras

5.5.1.2 Digital Input (Trigger) Circuit

Digital input specifications

USB board revision *) 1.2 2.0 or higher

Min. Max. Min. Max.

Level low 0 2 0 2 V

Level high 9 24 5 24 V

Voltage range 0 30 0 30 V

Trigger pulse width (edge) 100 - 100 - µs

Trigger edge steepness 35 35 V/ms

Breakdown voltage 50 50 V

Input current 10 - 10 - mA

Note

*) For information on how to determine the USB board revision, please refer to the DCx Driver Compatibility
chapter.

For interpreting the trigger signal, either the negative or the falling edge can be used. The digital input is
galvanically isolated using an opto coupler to protect the camera and the PC against surges. Only DC voltages may
be applied to the digital input.

Digital input wiring

Wiring of the trigger connector

58

© 2013 Thorlabs GmbH

5 Specifications

489

5.5.1.3 Digital Output (Flash) Circuit

Digital output specifications

USB board revision *) 1.2 2.0 or higher

Max. Max.

Output current (short-time) 50 500 mA

Output current (permanent) 15 150 mA

Output voltage 30 30 V

Breakdown voltage 50 50 V

Collector power dissipation 100 125 mW

NOTE

*) For information on how to determine the USB board revision, please refer to the DCx Driver Compatibility
chapter.

The digital output is galvanically isolated using an opto coupler to protect the camera and the PC against surges.
Only DC voltages may be applied to the digital input.

The output of the opto coupler can be used as an open collector or open emitter output. This means that the output
signal can be connected to ground or to the supply voltage. The output signal is active if the collector-emitter switch
is closed (software setting: Flash high active, see also the Camera Properties: Input/Output section).

Digital output wiring

The following figures show examples of how the digital output is wired.

Wiring of the digital output as an open collector output (rev. 1.2)

Wiring of the digital output as an open collector output (rev. 2.0)

58

104

© 2013 Thorlabs GmbH490

DCx Cameras

Wiring of the digital output as an open emitter output (rev. 2.0)

© 2013 Thorlabs GmbH

5 Specifications

491

5.5.2 DCC3240x

I/O connector Pin Assignment

GPIO Interface

Digital Input (Trigger) Circuit

Digital Output (Flash) Circuit

RS-232 Serial Interface

5.5.2.1 I/O Connector Pin Assignment

Attention

The General Purpose IO are not potential-free and have no protective circuit. Faulty wiring (overvoltage,
undervoltage or inverting the wiring when used as serial interface) can result in a damage in the electronics.

During operation as serial interface only LVCMOS levels are allowed to the connector pins. To get a serial RS-232
compliant interface, an external level shifter (LVCMOS/RS-232) is required.

Applying RS-323 levels directly to the pins as well as mixing up the signals RxD and TxD can destroy the camera
electronics!

Pin assignment of the 8-pin Hirose connector HR25 for trigger, flash and GPIO

Pin Description Cable color

Hirose connector male,
camera rear view

1 Ground (GND) gray

2 Flash output, opto-decoupled (-) green

3 GPIO 1, 3.3 V LVCMOS blue

4 Trigger input, opto-decoupled (-) brown

5 Flash output, opto-decoupled (+) yellow

6 GPIO 2, 3.3 V LVCMOS red

7 Trigger input, opto-decoupled (+) white

8 Output supply voltage, 5 V (100 mA) pink

For a comprehensive list of all cables and connectors available for DCC3240X cameras, please refer to the
DCC3240X Accessories section.

491

492

493

494

495

498

© 2013 Thorlabs GmbH492

DCx Cameras

5.5.2.2 GPIO Interface

GPIO specifications

The two GPIOs (General Purpose I/O) can be used as inputs or outputs. This selection is made by software using
the corresponding SDK API functions. Please observe the following criteria:

Input: 3.3 V LVCMOS, max. input voltage 4.0 V

Output: 3.3 V LVCMOS, max. 10 mA

Attention

The General Purpose IO are not potential-free and have no protective circuit. Faulty wiring (overvoltage,
undervoltage or inverting the wiring when used as serial interface) can result in a damage in the electronics.

During operation as serial interface only LVCMOS levels are allowed to the connector pins. To get a serial RS-232
compliant interface, an external level shifter (LVCMOS/RS-232) is required.

Applying RS-323 levels directly to the pins as well as mixing up the signals RxD and TxD can destroy the camera
electronics!

GPIO wiring as input

The following figures illustrate GPIO wiring examples.

GPIO input

Min. Max.

Signal level "Low" 0 0.8 V

Signal level "High" 2.0 4.0 V

GPIO wiring as output

GPIO output

Min. Max.

Signal level "Low" 0 0.8 V

Signal level "High" 2.4 3.3 V

Output current 0 8.0 mA

© 2013 Thorlabs GmbH

5 Specifications

493

5.5.2.3 Digital Input (Trigger) Circuit

Digital input specifications

Min. Max.

Level low 0 1 V

Level high 5 24 V

Voltage range 0 - V

Trigger pulse width (edge) 10 - µs

Trigger edge steepness 35 - V/ms

Breakdown voltage - 50 V

Input current 10 - mA

For interpreting the trigger signal, either the negative or the falling edge can be used. The digital input is
galvanically isolated using an optocoupler to protect the camera and the PC against surges. Only DC voltages may
be applied to the digital input.

Digital input wiring

Wiring of the trigger connector

© 2013 Thorlabs GmbH494

DCx Cameras

5.5.2.4 Digital Output (Flash) Circuit

Digital output specifications

Max.

Output current (short-time) 500 mA

Output current (permanent) 150 mA

Output voltage 30 V

Breakdown voltage 50 V

Collector power dissipation 125 mW

The digital output is galvanically isolated using an optocoupler to protect the camera and the PC against surges.
Only DC voltages may be applied to the digital output.

The output of the optocoupler can be used as an open collector or open emitter output. This means that the output
signal can be connected to ground or to the supply voltage. The output signal is active if the collector-emitter switch
is closed (software setting: Flash high active, see also the Camera properties: Input/output section).

Digital output wiring

The following figures show examples of how the digital output is wired.

Wiring of the digital output as an open collector output

Wiring of the digital output as an open emitter output

104

© 2013 Thorlabs GmbH

5 Specifications

495

5.5.2.5 RS-232 Serial Interface

Attention

The General Purpose IO are not potential-free and have no protective circuit. Faulty wiring (overvoltage,
undervoltage or inverting the wiring when used as serial interface) can result in a damage in the electronics.

During operation as serial interface only LVCMOS levels are allowed to the connector pins. To get a serial RS-232
compliant interface, an external level shifter (LVCMOS/RS-232) is required.

Applying RS-323 levels directly to the pins as well as mixing up the signals RxD and TxD can destroy the camera
electronics!

Serial interface specification

Minimum output voltage Min. Max.

Signal level "Low" 0 0.8 V

Signal level "High" 2.0 4.0 V

Maximum input voltage Min. Max.

Signal level "Low" 0 0.8 V

Signal level "High" 2.0 4.0 V

Supported Baud rates 9.600

19.200

38.400

57.600

115.200

baud

Transmission mode Full duplex, 8N1

Data bits 8

Stop bits 1

Parity None

Note

With the 8N1 mode, the maximum payload data rate achievable is 80% of the selected baud rate.

Serial interface wiring (UART)

The following figure shows the wiring of the serial interface with GPIO 1 as camera-side output (TxD) and GPIO 2
as camera-side input (RxD). The GPIO must be configured accordingly (see is_IO()).

Serial interface connector (UART)

287

© 2013 Thorlabs GmbH496

DCx Cameras

Serial interface wiring (RS-232)

Serial interface connector (RS-232)

5.5.3 Camera EEPROM Specification

DCx Cameras have an EEPROM memory where the camera manufacturer, type, and serial number are stored. A
64 byte memory space can be used freely by the user.

EEPROM Specifications

Data retention 10 years

Read/write cycles 100,000

Size of user data space 64 bytes

© 2013 Thorlabs GmbH

5 Specifications

497

5.6 Accessories for DCx cameras

Lenses

Thorlabs also supplies a wide variety of lenses and objectives from leading manufacturers. Please contact
Thorlabs for technical support and a detailed quote tailored to your needs.

USB cables

All Thorlabs DCx cameras are shipped with a 1.5m USB2.0, A to Mini B, cable.

5.6.1 Accessories for DCU22xX / DCC1240X

For information on the pin assignment of the cables and connectors see chapter Pin Assignment I/O Connector .

USB Cables with Cables for digital I/Os

CAB-DCU-T1 (angled Micro D SUB camera connector; trigger in / out)

CAB-DCU-T2 (straight Micro D SUB camera connector, trigger in only)

Type Length Cable Type Function Connector Camera Side
Connector PC

Side

CAB-DCU-T1 3 m
USB cable, AWG 28,
single shielded,
additional cable for
digital I/Os, 4-wire,
open wires

USB &
Trigger in
/ out

Micro D-Sub for screw-mounting,
angled USB 2.0

Type A

CAB-DCU-T2 3 m
USB &
Trigger in

Micro D-Sub for screw-mounting,
straight

518

487

http://www.thorlabs.de/NewGroupPage9.cfm?ObjectGroup_ID=1822

© 2013 Thorlabs GmbH498

DCx Cameras

5.6.2 Accessories for DCC1x45X

For USB cables and accessories see also Accessories for all DCx cameras .

DCC1545M and DCC1645C CS mount cameras are delivered with both CS / C objective mount adapter and CS /
SM1 1" optics adapters.

5.6.3 Accessories for DCC3240x

Type Length Cable Type Function Connector Camera Side

CAB-DCU-T3 3 m

Shielded high-flexible
control cable 8
x0.1mm, Ø 4.9mm

GPIO

digital in (trigger)

digital out (flash)

Hirose 8 pin (HR25)

Pin assignment of the 8-pin Hirose connector HR25 for trigger, flash and GPIO

Pin Description Cable color

Hirose connector female,
cable tip view

1 Ground (GND) gray

2 Flash output, opto-decoupled (-) green

3 GPIO 1, 3.3 V LVCMOS blue

4 Trigger input, opto-decoupled (-) brown

5 Flash output, opto-decoupled (+) yellow

6 GPIO 2, 3.3 V LVCMOS red

7 Trigger input, opto-decoupled (+) white

8 Output supply voltage, 5 V (100 mA) pink

497

© 2013 Thorlabs GmbH

6 Appendix

499

6 Appendix
Troubleshooting/FAQ

Status LED on USB DCx Cameras

Color and memory formats

uc480 parameter file (ini file)

History of uc480 software versions

History of API functions

6.1 Troubleshooting/FAQ

Installation and connection

Installation of the uc480 software fails.

You need administrator privileges to install the software. Operating the cameras, however, does not require
administrator privileges.

The camera is connected to the PC, but cannot be opened in uc480 Viewer.

Check the LED on the camera :

LED is red: Camera detection failed. Check whether the uc480 driver software has been installed. Disconnect
and reconnect the camera to the USB cable. The camera should then be correctly recognized.
If the camera is still not listed in the uc480 Camera Manager , open the Windows Device Manager to check
whether the camera has been correctly recognized. If recognition was successful, you will find an entry in the
format “uc480......cameras” under “Universal Serial Bus Controllers.” A question mark or exclamation mark
before the entry indicates that camera was not correctly recognized. You can remove the entry using the shortcut
menu (right-click). Disconnect and reconnect the camera. The Found New Hardware Wizard will detect it as a
new device and install the appropriate drivers. The camera should then be correctly recognized.

LED is green: The camera is fully operational. Check whether the camera has been opened in a different
application.

LED is off: No power supply to the camera. Check the cable, the connectors and, if applicable, the power supply
to the hubs. In case of a DCU22xX or DC1240X camera, check whether any pins of the micro D-sub connector

 have been bent.

LED flashes: A fault has occurred in the camera hardware. Please contact the Thorlabs .

USB DCx camera operation

The camera can be opened in the software, but captures images sporadically or not at all.

Check the status bar in the uc480 Viewer software. If the status bar indicates transfer errors, the camera speed
settings are too high for the system you are using. Check the following:

Use only USB 2.0 (USB 3 in case of DCC3240x) certified cables and hubs.

Do not use any passive extension cables.

Do not connect the camera to the USB ports on the front of the PC, but to the ones directly on the main board.
You will find those USB ports at the back of the PC.

In addition, check the following camera settings in the software:

Pixel clock frequency: Reduce the pixel clock if data transfer errors occur. When you are operating more than
one USB camera on one port, the pixel clock of all the cameras added together should not exceed about 40
MHz.

Is it possible to operate an older USB camera with Windows 7?

Look for the serial number to see if your camera can be operated with Windows 7:

The support for Windows 7 was introduced with driver version 3.50. This driver can be used with cameras from
serial number 400 26 27000 on.

Using the uc480 Viewer software

I have added comments and drawings to a camera image. How can I save the image with this data?

To save a camera image with all the included text and drawings, select "Save window" from the Draw/Measure
menu. The menu also provides an option for saving only the drawings, so you can load them again later.

499

501

502

504

509

516

501

68

487

518

79

44

82

© 2013 Thorlabs GmbH500

DCx Cameras

6.1.1 PCs with Energy Saving CPU Technology

This application note is related to all DCx USB cameras connected to PC systems using current CPU models that
implement modern energy saving technologies.

Symptoms:

- Low USB bandwidth provided by the PC system

- TransferFailed errors occurring even at moderate pixel clock settings

- Camera operates at low speed only

Summary:

Current CPUs with modern energy saving features can cause bandwidth limitations on USB. The only available
approach to this issue is to disable CPU sleep states. Unfortunately this is not possible for all systems.

Detailed explanation:

Modern CPUs like Intel i5 & i7 and others make use of advanced energy saving technologies ensuring a low power
consumption and long battery life for mobile

devices. Additionally those CPU implement features for increasing the performance of single cores if there is
enough thermal headroom available when other cores have little load.

A basic idea to achieve this is to put a CPU core to sleep while there is nothing to do for it. Various different activity
states of CPU cores are available in modern CPUs. These CPU states are referred to as “C-states”. C0 is the
working state of a core.

Increasing numbers refer to less activity and longer wake up times. Current CPU fall down to variations of the C3
state which are referred to as “Sleep”, “Deep Sleep” and similar.

Unfortunately negative effects of the sleep states have shown up. It is observed that the available bandwidth of PC
busses drops significantly when part of the CPU enters these states.

The operation of DCx USB cameras is affected by the sleep states because they reduce the speed of the USB
system. The available bandwidth on the USB may drop down to around 30% of the maximum bandwidth when the
CPU, or one of its cores, enters sleeping states.

One would expect that a CPU core will not fall into a sleep state while it is obviously needed for the operation of the
USB. But obviously USB data transfers do not prevent the CPU from falling to sleep. If the code execution load of a
CPU core is low enough it will fall asleep and immediately reduce the USB bus speed.

For operation at high frame rates DCx cameras require an adequate USB bandwidth which might not be available
when CPU cores are in sleep states.

Advice:

If you seem to be running into this low bandwidth issue please check and try the following. These first hints are
general recommendations for issues with the USB

data transfer. You can check the USB performance with the “Optimum” pixel clock settings checkbox in uc480
Demo software. A good USB system should be able to reach a pixel clock setting near the maximum value.

Please remove other USB devices from the system (USB keyboard and mouse are fine). Run tests with only one
camera connected at once.

Make sure using a USB port directly on the mainboard. Front panel or other ports are connected to the
mainboard with poor cabling quality frequently.

Make sure to use USB2.0 certified cables to connect the camera.

If you are using USB hubs or extensions: Run a test without these devices, connect the camera directly to the
PC.

Disable other equipment that is connected via USB. For example WLAN and Bluetooth adapters might use USB
to connect.

If you are using a mobile PC: run it on mains power, not battery.

Check your energy saving options in the operating system. Disable energy saving features and set the available
features to “full performance” or similarly named options.

If you checked the above and still observe low USB performance you might be experiencing the issue with CPU
sleep states.

© 2013 Thorlabs GmbH

6 Appendix

501

6.2 Status LED on USB DCx Cameras

DCU223x, DCU224x and DCC1240x

The LED on the rear side of the USB DCx camera indicates whether

the DCx camera is powered on – LED lights up red (only USB board rev. 2.0 or higher).

the uc480 driver has been loaded and the camera is operational – LED lights up green

an error has occurred – green LED flashes:

2x flash: unknown sensor, please contact our Thorlabs team.

If the LED does not light up green, please check the following:

Has the camera been connected correctly?

Have the driver and the camera been installed properly in the uc480 Camera Manager on the host PC?

Does the host PC meet all system requirements ?

Revision 1.2 (green Status LED) Revision 2.0 (red/green LED)

DCC3240x

The LED on the DCC3240x flashes 2x green if the camera is connected to a USB 2.0 port. If the camera is
connected to a USB 3.0 port the LED flashes 3x green.

518

61

56

© 2013 Thorlabs GmbH502

DCx Cameras

6.3 Color and Memory Formats

Attention

Obsolete parameters

The following parameters for color formats are obsolete and should no longer be used (see also
is_SetColorMode()):

IS_SET_CM_RGB32

IS_SET_CM_RGB24

IS_SET_CM_RGB16

IS_SET_CM_RGB15

IS_CM_UYVY_MONO_PACKED

IS_CM_UYVY_BAYER_PACKED

IS_CM_BAYER_RG8 (identical to IS_CM_SENSOR_RAW8)

IS_CM_BAYER_RG12 (identical to IS_CM_SENSOR_RAW12)

IS_CM_BAYER_RG16 (identical to IS_CM_SENSOR_RAW16)

IS_CM_BGR555_PACKED (has been renamed to IS_CM_BGR5_PACKED)

Each color format supported by the DCx camera defines a different memory format. The following table shows the
byte arrangement in memory:

321

© 2013 Thorlabs GmbH

6 Appendix

503

Colour and memory formats

Note

An asterisk (*) identifies formats which are filled starting with the most significant bit (MSB) but which may have
less than the indicated number of payload bits, depending on the camera model.

For the RGB16 and RGB15 data formats, the MSBs of the internal 8-bit R, G and B colors are used.

The first pixel in the first line with the index (0,0) is always a red pixel at color cameras.

The list above does not contain the IS_CM_RGB8_PLANAR color format. In planar RGB the image is saved as 8 bit
RGB. The channels red, green, and blue are stored separately, i.e. first all red information, then all green
information and at last all blue information are saved.

© 2013 Thorlabs GmbH504

DCx Cameras

6.4 uc480 Parameter File (ini file)
Using the is_ParameterSet() function, you can save the currently set DCx camera parameters to a file in the ini
format (*.ini) or load an ini file.

Attention

Only camera-specific ini files can be loaded.

The ini file you want to load has to match the paired camera model.

When loading an ini file, make sure that the image size (AOI) and color depth parameters in the ini file match those
in the allocated memory. Otherwise, display errors may occur.

uc480 parameter files can also be created and edited manually. The following table shows the structure of the
parameter file. The entries in square brackets [] indicate sections. If a section does not exist in the ini file, the
corresponding camera parameters will not be modified when you load the file.

Hint

You can use wildcards in the ini file:

If you specify * as first character, then the highlighted characters will be interpreted in the camera name only, e.g.
*DCU224C. Thus this string applies for DCU223C and DCU224C.

Structure of a uc480 parameter file

Parameter Description Value range Example

[Versions]

uc480_api.dll File version of the uc480 API - 4.00.0000

uc480_eth.sys (Not applicable to DCx
Cameras)

- 4.00.0000

uc480_usb.sys File version of the USB uc480
driver

- 4.00.0000

uc480_boot.sys File version of the USB uc480
boot loader

- 4.00.0000

[Sensor]

Sensor Full name of the camera model - DCC3240C

[Image size] Image size settings

Start X Start point (X coordinate) in AOI
mode

0...(max. width*1-Width) 100

Start Y Start point (Y coordinate) in AOI
mode

0...(max. height*1-Height) 100

Start X absolute Activate absolute AOI
positioning in the memory (see
is_AOI())

0, 1 1

Start Y absolute Activate absolute AOI
positioning in the memory (see
is_AOI())

0, 1 1

Width Width of the AOI Sensor-dependent*1 2460

Height Height of the AOI Sensor-dependent*1 1820

Binning Activate binning mode and
select factor

Sensor-dependent*2 0

Subsampling Activate subsampling mode and
select factor

Sensor-dependent*2 0

[Scaler] The internal image scaling is only supported by sensors of the DCC1240x /
DCC3240x camera series.

Mode Enable/disable scaling 0 = Scaling off

1 = Scaling on

0

Factor Scaling factor

292

159

159

© 2013 Thorlabs GmbH

6 Appendix

505

Parameter Description Value range Example

[Multi AOI]

Enabled Activate/deactivate multi AOI 0 = Multi AOI off

1 = Multi AOI on

0

Mode Mode of multi AOI

Currently only
IS_AOI_MULTI_MODE_AXES
is supported

x1…x4, y1…y4 Axis for multi AOI mode

[Shutter]

Mode Shutter mode Sensor-dependent (only
supported by DCC1240x /
DCC3240x models)

1 = Rolling shutter

2 = Global shutter

4 = Fast linescan

64 = Rolling shutter with global
start

128 = Global shutter (alternative
timing)

1

Linscan number Line which is used in the
linescan mode. The maximum
possible line number depends
on the height of the selected
AOI.

Sensor-dependent (only
supported by DCC1240x /
DCC3240x models)

512

[Log Mode]

Mode Log mode (only supported by
DCC1240x / DCC3240x
models)

0 = Factory-default with anti-
blooming

1 = Off (no anti-blooming)

2 = Manual Log mode

0

Manual value Log mode value Only in combination with manual
Log modeManual gain Log mode gain

[Timing] Timing parameter settings

Pixelclock Current pixel clock of the
camera

Sensor-dependent*1 103

Framerate Current frame rate Depends on Pixelclock and
image geometry

15.104458

Exposure Current exposure time Depends on Framerate 0.334059

Long exposure Activates long exposure

If the long exposure is active,
then the range of exposure
changes.

Not supported by DCx cameras 0

[Selected Converter] Sets the type of Bayer conversion for the specified color format when using color
cameras (see is_SetColorConverter()). For a description of all color
formats, see the Color and memory formats section.

IS_SET_CM_RGB32 Color format 0, 1, 2, 4 2

IS_SET_CM_RGB24 Color format 0, 1, 2, 4 2

IS_SET_CM_RGB16 Color format 0, 1, 2, 4 2

IS_SET_CM_RGB15 Color format 0, 1, 2, 4 2

IS_SET_CM_Y8 Color format 0, 1, 2, 4 2

IS_SET_CM_RGB8 Color format 0, 1, 2, 4 2

IS_SET_CM_BAYER Color format 0, 1, 2, 4 8

IS_SET_CM_UYVY Color format 0, 1, 2, 4 2

315

502

© 2013 Thorlabs GmbH506

DCx Cameras

Parameter Description Value range Example

IS_SET_CM_UYVY_MONO Color format 0, 1, 2, 4 2

IS_SET_CM_UYVY_BAYER Color format 0, 1, 2, 4 2

IS_CM_CBYCRY_PACKED Color format 0, 1, 2, 4 8

IS_SET_CM_RGBY Color format 0, 1, 2, 4 8

IS_SET_CM_RGB30 Color format 0, 1, 2, 4 8

IS_SET_CM_Y12 Color format 0, 1, 2, 4 8

IS_SET_CM_BAYER12 Color format 0, 1, 2, 4 8

IS_SET_CM_Y16 Color format 0, 1, 2, 4 8

IS_SET_CM_BAYER16 Color format 0, 1, 2, 4 8

IS_CM_RGBA8_PACKED Color format 0, 1, 2, 4 2

IS_CM_RGB8_PACKED Color format 0, 1, 2, 4 2

IS_CM_RGBY8_PACKED Color format 0, 1, 2, 4 8

IS_CM_RGB10V2_PACKED Color format 0, 1, 2, 4 8

[Parameters] Additional image parameter settings

Colormode Sets the current color mode see Color and memory formats 11

Brightness Software correction of image
brightness*3

0...255 100

Contrast Software correction of image
contrast*3

0...511 215

Gamma Software correction of the
gamma value

0.01...10.0 1.000000

Hardware Gamma Sensor-based hardware
correction of the gamma value

0, 1 0

Blacklevel Mode Mode for black level correction
of the sensor

0, 1, 32*2 1

Blacklevel Offset Manual offset for black level
correction of the sensor

0...255 0

Hotpixel Mode Mode for hot pixel correction 0, 1, 2, 4*2 2

Hotpixel Threshold Not used - 0

Sensor Hotpixel Activates the sensor-internal hot
pixel correction

Sensor-dependent*1

1 = on

0 = off

0

GlobalShutter Enables the Global Start shutter
of the sensor

0, 1

Not supported by DCx models,
they return "7" (not supported).

0

[Gain] Sets the sensor gain control for image brightness

Master Master gain 0...100 0

Red Red gain 0...100 6

Green Green gain 0...100 0

Blue Blue gain 0...100 6

GainBoost Activate gain boost 0, 1 0

[Processing] Parameters for image pre-processing in the driver

EdgeEnhancementFactor Enable edge enhancement 0...2 0

RopEffect Image geometry change (Rop =
raster operation), e.g. mirroring

0, 8, 16, 32, 64*2 0

Whitebalance Enable software white balance 0, 1, 2, 4*2 0

Whitebalance Red Red factor for software white double value 1.000000

502

© 2013 Thorlabs GmbH

6 Appendix

507

Parameter Description Value range Example

balance

Whitebalance Green Green factor for software white
balance

double value 1.000000

Whitebalance Blue Blue factor for software white
balance

double value 1.000000

Color correction Enable color correction 0, 1, 2, 4, 80*2 1

Color_correction_facto
r

Set the color correction factor 0.0...1.0 1.000000

Color_correction_satU Saturation-U (see also
is_SetSaturation())

0…200

100 = Saturation 1.0

200 = Saturation 2.0

0

Color_correction_satV Saturation-V (see also
is_SetSaturation())

0…200

100 = Saturation 1.0

200 = Saturation 2.0

0

Bayer Conversion Sets the size of the Bayer
conversion mask for the current
color format when using color
cameras

1, 2*2 1

[Auto features] Sets the parameters for automatic image control

Auto Framerate control Enable frame rate control 0, 1 0

Brightness exposure
control

Enable exposure time control 0, 1 0

Brightness gain
control

Enable sensor gain control 0, 1 0

Auto Framerate Sensor
control

Enable the senor-internal control
for frame rates (see also
is_SetAutoParameter()
)

0 = off

1 = on

0

Brightness exposure
Sensor control

Enable the sensor-internal
brightness control

0 = off

1 = on

0

Brightness gain Sensor
control

Enable the sensor-internal gain
control

0 = off

1 = on

0

Brightness exposure
Sensor control
photometry

Not supported by DCx cameras

Brightness gain Sensor
control photometry

Not supported by DCx cameras

Brightness control
once

0, 1 0

Brightness reference Reference value for brightness
control

0...255 128

Brightness speed Brightness control speed 0...100 50

Brightness max gain Maximum gain for brightness
control

0...100 100

Brightness max
exposure

Maximum exposure time for
brightness control

Depends on Pixelclock and
image geometry

66.082816

Brightness Aoi Left X start point of reference AOI for
brightness control

0...(max. width*1-Aoi Width) 0

Brightness Aoi Top Y start point of reference AOI for
brightness control

0...(max. height*1-Aoi Height) 0

Brightness Aoi Width Width of reference AOI for
brightness control

Sensor-dependent*1 2560

Brightness Aoi Height Height of reference AOI for Sensor-dependent*1 1920

342

342

303

© 2013 Thorlabs GmbH508

DCx Cameras

Parameter Description Value range Example

brightness control

Brightness Hysteresis Hysteresis value for auto
exposure and gain (see
IS_SET_AUTO_HYSTERESIS

)

0…10 2

Brightness Skip Frames Number of images that will be
not analyzed for the control
(see
IS_SET_AUTO_SKIPFRAMES

)

0…1000 4

Auto WB control Enable white balance control 0, 1 0

Auto WB type White balance mode

Auto WB RGB color mode Color space of white balance
(only active, if the mode "Auto
(Kelvin)" is set)

Auto WB offsetR Red offset for white balance
control

0...100 0

Auto WB offsetB Blue offset for white balance
control

0...100 0

Auto WB gainMin Minimum gain for white balance
control

0 <= gainMin <= gainMax <=
100

0

Auto WB gainMax Maximum gain for white balance
control

0 <= gainMin <= gainMax <=
100

100

Auto WB speed White balance control speed 0...100 50

Auto WB Aoi Left X start point of reference AOI for
white balance control

0...(max. width*1-Aoi Width) 0

Auto WB Aoi Top Y start point of reference AOI for
white balance control

0...(max. height*1-Aoi Height) 0

Auto WB Aoi Width Width of reference AOI for white
balance control

Sensor-dependent*1 2560

Auto WB Aoi Height Height of reference AOI for
white balance control

Sensor-dependent*1 1920

Auto WB Once Carry out white balance control
once

0, 1 0

Auto WB Hysteresis Hysteresis value for auto white
balance (see
IS_SET_AUTO_WB_HYSTERES
IS)

0…10 2

Auto WB Skip Frames Number of images that will not
be analyzed for control (see
IS_SET_AUTO_WB_SKIPFRAM
ES)

0…1000 4

[Trigger and Flash] Sets the digital inputs/outputs

Trigger mode Trigger mode

Trigger timeout Timeout value for triggered
image capture in 10 ms steps

Trigger delay Delay of triggered image
capture in µs

Sensor-dependent*1 15

Trigger debounce mode Not supported by DCx cameras

Trigger debounce delay
time

Not supported by DCx cameras 10

Trigger burst size Not supported by DCx cameras

Flash strobe Activate flash output 0...6*2 0

306

305

307

307

© 2013 Thorlabs GmbH

6 Appendix

509

Parameter Description Value range Example

Flash delay Delay of the flash signal in µs Depends on sensor setting, can
be queried using is_IO()

0

Flash duration Duration of the flash signal in µs Depends on sensor setting, can
be queried using is_IO()

200

PWM mode PWM mode see is_IO()

PWM frequency Frequency of the pulse-width
modulation

PWM duytcycle Duty cycle of the pulse-width
modulation

0.0…1.0 (1.0 corresponds to
100 %)

GPIO state State of the GPIO see is_IO()

GPIO direction Direction of the GPIO see is_IO()

[Sequence AOI] The sequence AOI is supported by DCC1240x / DCC3240x models only.

NumberUsedAOI Number of used AOIs see is_AOI()

StartX1…StartX3 X position of AOI 1-3

StartY1…StartY3 Y position of AOI 1-3

Gain1…Gain3 Gain of AOI 1-3

Exposure1…Exposure3 Exposure of AOI 1-3

ReadoutCycle1…
ReadoutCycle3

Number of read-out cycles of
AOI 1-3

BinningMode1…
BinningMode3

Binning mode of AOI 1-3

SubsamplingMode1…
SubsamplingMode3

Subsampling mode of AOI 1-3

ScalerFactor1…
ScalerFactor3

Scaling factor of AOI 1-3

DetachImageParameter1…

DetachImageParameter3
Changes of exposure time and
gain are transferred to AOI 1-3

0 = Every change is transferred

1 = Changes are not transferred

see also is_AOI()

[Transfer] Not supported by DCx cameras

ImageDelay_us

PacketInterval_us

*1 This information is provided in Camera and sensor data chapter.

*2 For the parameters, please refer to the uc480.h header file provided in the \Develop\include folder of the uc480
installation directory (see also Programming notes).

*3 Function obsolete, see chapter Obsolete functions .

6.5 Definition of IP Protection Classes
The housing of the DCx Cameras comply with IP 30:

Protection against the ingression of small particles (diameter > 2.5 mm)

No protection against water

6.6 History of uc480 Software Versions
For new features in the current driver version 4.20see What is New in this Version? .

New in Version 4.02

Cameras & functions Described in chapter

The USB 3 DCC3240x cameras are now supported under Windows

280

280

280

280

280

159

159

460

451

379

16

© 2013 Thorlabs GmbH510

DCx Cameras

Cameras & functions Described in chapter

XP (32 bit).

The is_WriteI2C() function has been extended with the
IS_I2C_DONT_WAIT parameter. The default polling may be
disabled, whether the byte has been written into the storage cell.

The AVI functions of the uc480_tools.dll now supports
UNICODE strings for file names.

isavi_GetAVIFileNameW()

isavi_OpenAVIW()

The sample programs contain two new samples for .NET
programming.

See separate uc480 Samples Manual

The is_IO() function has been extended so that small flash
duration and flash delay can be set for flash via the GPIOs.

is_IO()

New in Version 4.01

Cameras & functions Described in chapter

Support of the DCC1240x/DCC3240x with NIR sensor DCC1240x/DCC3240x Camera and sensor
data

New camera family GigE uEye LE as board-level camera. DCx camera family

Additional shutter modes and Log mode for DCC1240x/DCC3240x
cameras

uc480 Viewer > Properties > Shutter

The is_DeviceFeature() function was enhanced to control and
set the shutter modes and the Log mode of the DCC1240x/
DCC3240x.

is_DeviceFeature()

New function is_Blacklevel() for controlling the black level is_Blacklevel()

The is_IO() function was enhanced to control the configuration of
the GPIOs.

is_IO()

Information in this manual Decsribed in chapter

With the is_Blacklevel() function the following uc480 function
is now obsolete:

is_SetBlCompensation()

Obsolete functions

New in Version 4.00

Cameras & functions Described in chapter

New camera family: DCC3240x DCx camera family

Model comparison

Mechanical Specifications DCC3240x

Camera Interface DCC3240x

Added USB 3 specifications to the chapter about the USB interface USB interface

New function is_AutoParameter() enables/disables the auto
white balance. This function is similar to the
is_SetAutoParameter() function but does not replace the
function completely in version 4.20.

is_AutoParameter()

The is_HotPixel() function supports now Unicode file names for
saving and loading of hotpixel lists.

is_HotPixel()

New function for the conversion of a raw Bayer image into a the
desired output format.

is_Convert()

New function for activating/deactivating the software edge filter. is_EdgeEnhancement()

New function for saving the camera parameter set in a file or the
camera EEPROM and loading from a file or the camera EEPROM
respectively.

is_ParameterSet()

New function for controlling the camera pixel clock. is_PixelClock()

New function for reading camera information. is_DeviceInfo()

365

372

280

461

14

115

192

170

280

379

14

459

474

491

51

167

260

188

206

292

294

196

© 2013 Thorlabs GmbH

6 Appendix

511

Cameras & functions Described in chapter

New function for saving and loading image files. is_ImageFile()

Information in this manual Decsribed in chapter

Now, for all functions all return values are listed in the function
description.

With the is_ Convert() function the following uc480 functions
are now obsolete:

is_ConvertImage()

is_SetConvertParam()

Obsolete functions

With the is_EdgeEnhancement() function, the following uc480
function is now obsolete:

is_SetEdgeEnhancement()

Obsolete functions

With the is_ParameterSet() function the following uc480
functions are now obsolete:

is_SaveParameters()

is_LoadParameters()

Obsolete functions

With the is_PixelClock() function the following uc480 functions
are now obsolete:

is_GetPixelClockRange()

is_SetPixelClock()

Obsolete functions

With the is_DeviceInfo() function, the following uc480 function
is now obsolete:

is_GetEthDeviceInfo()

Obsolete functions

With the is_ImageFile() function the following uc480 functions
are now obsolete:

is_LoadImage()

is_LoadImageMem()

is_SaveImage()

is_SaveImageEx()

is_SaveImageMem()

is_SaveImageMemEx()

Obsolete functions

New in Version 3.90

Cameras & functions Described in chapter

Sequence AOI mode (camera models DCC1240x)

You can define up to 4 AOIs. These have the same size, but may
have a different position. It is also possible to have different settings
for each AOI for exposure time and master gain. In addition, you
can define for AOI 2, 3, and 4 how often they are readout and the
images are transferred.

Sequence AOI

is_AOI()

Additional resolution profiles for CMOS and CCD cameras. is_ImageFormat()

New demo uc480SequenceAoi for showing the sequence AOI
mode of the camera models DCC1240x.

New demo C#-Cockpit with expanded settings under C#.

New function for getting and setting of the camera exposure time. is_Exposure()

New function for information about errors when capturing images. is_CaptureStatus()

New function for controlling the digital in-/outputs of the cameras is_IO()

New header file uc480_deprecated.h with all deprecated
function definitions and constants. These are no longer part of the
uc480.h file. If neccessary the uc480_deprecated.h can be

264

379

379

379

379

379

379

113

159

267

216

174

280

© 2013 Thorlabs GmbH512

DCx Cameras

Cameras & functions Described in chapter

included additionally beside the uc480.h.

The DCx Manager is renamed to uc480 Camera Manager. This is
the control center for managing all DCx cameras.

uc480 Camera Manager

JPEG- and PNG files can be loaded using the is_LoadImage()
function.

is_LoadImage()

Information in this manual Decsribed in chapter

The is_IO() function integrated all flash and IO functions. The
following uc480 functions are now obsolete:

is_SetIO()

is_SetIOMask()

is_SetLED()

is_GetGlobalFlashDelays()

is_SetFlashDelay()

is_SetFlashStrobe()

Obsolete functions

is_SetIO

is_SetIOMask

is_SetLED

is_GetGlobalFlashDelays

is_SetFlashDelay

is_SetFlashStrobe

The is_Exposure() function integrates the functions for camera
exposure. The following uc480 functions are now obsolete:

is_GetExposureRange()

is_SetExposureTime()

Obsolete functions

is_GetExposureRange()

is_SetExposureTime()

The is_CaptureStatus() function provide information about
errors while capturing images. The following uc480 functions are
now obsolete:

is_GetCaptureErrorInfo()

is_ResetCaptureErrorInfo()

Obsolete functions

is_GetCaptureErrorInfo()

is_ResetCaptureErrorInfo()

New in Version 3.82

Cameras & functions Described in chapter

New function to set system-wide options. is_Configuration()

New function to set and query the exposure time. is_Exposure()

The functions for AVI recording with the uc480_tools.dll are
supported by 64 bit operating systems.

AVI Function Descriptions

New in Version 3.80

Cameras & functions Described in chapter

Support of the Multi AOI mode on DCC1240x camera models Basice: Area of Interest (AOI)

uc480 Viewer: Multi AOI

is_AOI()

DCC1240x Specifications

Support of the line scan mode on DCC1240x camera models Basics: Zeilenmodus

uc480 Viewer: Shutter

is_DeviceFeature()

DCC1240x Specifications

New function for setting the size and position of an area of interest
(AOI)

is_AOI()

New function for reading and extending the camera's internal hot
pixel correction list

is_HotPixel()

New function for setting special options on some camera models.
Currently the following special options are available through this
function:

On UI-124x/UI524x models: Set line scan mode

On UI-124x/UI524x models: Toggle between rolling and global
shutter mode

is_DeviceFeature()

67

395

379

440

441

443

391

429

431

379

390

427

379

386

404

183

216

359

34

112

159

461

33

115

192

461

159

260

192

© 2013 Thorlabs GmbH

6 Appendix

513

Cameras & functions Described in chapter

On UI-1008XS (uEye XS) model: Choose the HS mode for
triggered image capture

Predefined image formats can now be set for all CMOS cameras is_ImageFormat()

New uc480 Hotpixel Editor for editing the hotpixel list stored in the
camera

uc480 Hotpixel Editor

The I2C outputs on some uEye models can now be programmed
directly in the uc480 Viewer.

uc480 Viewer: Miscellaneous

The uc480 Viewer can now display and save images with a bit
depth of more than 8 bit.

uc480 Viewer: Format

Information in this manual Described in chapter

The application notes for the individual camera models are now
provided in a separate chapter.

Application notes for the cameras

The is_AOI() function comprises all the functions for setting and
positioning an AOI. The following uc480 API commands are
therefore obsolete and have been moved to the Obsolete Functions
chapter:

is_SetAOI()

is_SetImageAOI()

is_SetImageSize()

is_SetImagePos()

is_AOI() also allows quickly moving an AOI to a different position.

Obsolete Functions

is_AOI()

New in Version 3.70

Cameras & functions Described in chapter

New API function for setting the color space and color
temperature

is_ColorTemperature()

New function parameters for reading out the exposure time range is_SetExposureTime()

Information in this manual Described in chapter

Updated camera specifications DCC1240x

Schematic timing diagrams for using the flash in hardware trigger
mode

Digital In-/Output (Trigger/Flash)

New in Version 3.60

Functions Described in chapter

New function in uc480 Viewer for selection profiles for camera
settings

Start Dialog

Creating Profiles

Information in this manual Described in chapter

Function is_GetCameraType() moved to the "Obsolete
Functions" section. It is entirely replaced by is_GetCameraInfo
().

Obsolete Functions

is_GetCameraInfo()

267

123

110

99

63

379

159

180

427

461

47

76

117

379

231

© 2013 Thorlabs GmbH514

DCx Cameras

New in Version 3.51

Functions Described in chapter

Driver support for Windows 7 System Requirements

Support for 64 bit versions of Windows 7, Windows Vista and Linux System Requirements

Software Described in chapter

Support of Direct3D graphics functions with Overlay

The DirectDraw functions have been completely replaced by the new
API function. This function allows image scaling and inserting overlay
data into the camera's live image without flicker.

Camera properties: Format

System Requirements

Extended Automatic Image Control:

Configurable hysteresis control

Automatic Image Control

AES/AGC (Automatic Brightness Control)

Information in this Manual Described in chapter

Basics of digitizing and bit depth of image data Basics: Digitizing Images

Function is_GetCameraType() moved to the "Obsolete Functions"
section. It is entirely replaced by is_GetCameraInfo().

Obsolete Functions

is_GetCameraInfo()

Merge of the previously separated manuals DCx Programming Manual
and DCx User Manual.

-

New section: How to Proceed - DCx Programming How To Proceed

New chapter: Troubleshooting Troubleshooting

Keyword index added -

New chapter: Quick-start

This chapter explains in a nutshell how to configure your DCx camera
and capture images.

Quick-start

New chapter: Firmware and Camera Start-up Firmware and Camera Start-up

New chapter: All DCx models at a glance

A table shows the most important features of each DCx series at a
glance.

Model comparison

Exact measuring results for the trigger delay of all DCx models. Camera and Sensor Data

New in Version 3.32

New features Described in chapter

Extended trigger mode

The continuous trigger mode allows triggering the DCx repeatedly.
The camera no longer has to be made ready for the next trigger
before each image capture.

Operating Modes: Trigger Mode

Improved DCx Camera Manager features uc480 Camera Manager

Test image function
The camera transmits a selectable test image that you can use for
testing the data transmission.

Camera properties: Test image

Support of 10 and 12 bit sensor data
Some sensors can output images with a color depth of 10 to 12
bits. This data can now be processed by the DCx software.

Camera and Sensor Data

New color formats
uc480 driver version 3.3 supports a wide range of new color

Camera properties: Color

12

12

99

12

46

106

39

379

231

129

499

54

46

459

460

19

67

110

460

102

© 2013 Thorlabs GmbH

6 Appendix

515

formats for all DCx cameras. These include:

o RGB/BGR 30
o RGBY
o Y12
o YCbCr
o Enhanced YUV

Full support of Windows Vista (32 Bit)
From driver version 3.30 onwards, all DCx cameras will run under
Windows Vista 32.

System Requirements

Localization of the uc480 Camera Manager
The uc480 Camera Manager offers new features and now also
supports over 10 languages that can be switched anytime.

uc480 Camera Manager

New information in the manual Described in chapter

Detailed presentation of all DCx operating modes Operating Modes

Updated connected load data on every camera model Camera and Sensor Data

12

67

17

460

© 2013 Thorlabs GmbH516

DCx Cameras

6.7 History of uc480 API Functions

New functions in software version 4.20

is_Measure()

New functions in software version 4.01

is_Blacklevel()

New functions in software version 4.00

is_AutoParameter()

is_Convert()

is_DeviceInfo()

is_EdgeEnhancement()

is_ImageFile()

is_ParameterSet()

is_PixelClock()

New functions in software version 3.90

is_CaptureStatus()

is_Exposure()

is_IO()

New functions in software version 3.81

is_Configuration()

New functions in software version 3.80

is_AOI()

is_DeviceFeature()

is_HotPixel()

New functions in software version 3.70

is_ColorTemperature()

New functions in software version 3.52/3.60

is_ImageFormat()

New functions in software version 3.40

is_DirectRenderer()

is_GetImageInfo()

is_GetSensorScalerInfo()

is_SetSensorScaler()

New functions in software version 3.33

is_Direct3D()

is_GetTimeout()

New functions in software version 3.32

is_GetTimeout()

is_SetTimeout()

290

170

167

188

196

206

264

292

294

174

216

280

183

159

192

260

180

267

198

244

252

343

198

256

256

350

© 2013 Thorlabs GmbH

6 Appendix

517

is_SetTriggerCounter()

New functions in software version 3.30

is_GetCameraLUT()

is_GetCaptureErrorInfo()

is_GetColorConverter()

is_GetSupportedTestImages()

is_GetTestImageValueRange()

is_ResetCaptureErrorInfo()

is_SetColorConverter()

is_SetSensorTestImage()

New function in software version 3.20

is_SetOptimalCameraTiming()

351

235

386

236

253

255

404

315

345

338

© 2013 Thorlabs GmbH518

DCx Cameras

6.8 Thorlabs Worldwide Contacts

USA, Canada, and South America

Thorlabs, Inc.
56 Sparta Avenue
Newton, NJ 07860
USA
Tel: 973-579-7227
Fax: 973-300-3600
www.thorlabs.com
www.thorlabs.us (West Coast)
Email: sales@thorlabs.com
Support: techsupport@thorlabs.com

UK and Ireland
Thorlabs Ltd.
1 Saint Thomas Place, Ely
Cambridgeshire CB7 4EX
United Kingdom
Tel: +44-1353-654440
Fax: +44-1353-654444
www.thorlabs.com
Email: sales.uk@thorlabs.com
Support: techsupport.uk@thorlabs.com

Europe
Thorlabs GmbH
Hans-Böckler-Str. 6
85221 Dachau
Germany
Tel: +49-8131-5956-0
Fax: +49-8131-5956-99
www.thorlabs.de
Email: europe@thorlabs.com

Scandinavia
Thorlabs Sweden AB
Mölndalsvägen 3
412 63 Göteborg
Sweden
Tel: +46-31-733-30-00
Fax: +46-31-703-40-45
www.thorlabs.com
Email: scandinavia@thorlabs.com

France
Thorlabs SAS
109, rue des Côtes
78600 Maisons-Laffitte
France
Tel: +33-970 444 844
Fax: +33-811 38 17 48
www.thorlabs.com
Email: sales.fr@thorlabs.com

Brazil
Thorlabs Vendas de Fotônicos Ltda.
Rua Riachuelo, 171
São Carlos, SP 13560-110
Brazil
Tel: +55-16-3413 7062
Fax: +55-16-3413 7064
www.thorlabs.com
Email: brasil@thorlabs.com

Japan
Thorlabs Japan, Inc.
Higashi Ikebukuro
Q Building 2nd Floor 2-23-2
Toshima-ku, Tokyo 170-0013
Japan
Tel: +81-3-5979-8889
Fax: +81-3-5979-7285
www.thorlabs.jp
Email: sales@thorlabs.jp

China
Thorlabs China
Room A101, No. 100
Lane 2891, South Qilianshan Road
Putuo District
Shanghai 200331
China
Tel: +86-21-60561122
Fax: +86-21-32513480
www.thorlabs.hk
Email: chinasales@thorlabs.com

http://www.thorlabs.com
http://www.thorlabs.us
mailto:sales@thorlabs.com
mailto:techsupport@thorlabs.com
http://www.thorlabs.com
mailto:sales.uk@thorlabs.com
mailto:techsupport.uk@thorlabs.com
http://www.thorlabs.de
mailto:europe@thorlabs.com
http://www.thorlabs.com
mailto:scandinavia@thorlabs.com
http://www.thorlabs.com
mailto:sales.fr@thorlabs.com
http://www.thorlabs.com
mailto:brasil@thorlabs.com
http://www.thorlabs.jp
mailto:sales@thorlabs.jp
http://www.thorlabs.hk
mailto:chinasales@thorlabs.com

© 2013 Thorlabs GmbH

6 Appendix

519

6.9 Certifications and Compliances
Compliance with the directives is demonstrated by meeting the following standards:

Product type EMC immunity EMC emission UL certification

DCC1240x*1 EN 61000-6-
2:2005

EN 61000-6-3:2001 +
A11:2004

UL 60950-1, 2nd Edition, 2011-12-19

CSA C22.2 No. 60950-1-07, 2nd Edition, 2011-12

DCU223x *1

DCU224x *1
EN 61000-6-
2:2001

EN 61000-6-4:2001 UL 60950-1, 2nd Edition, 2011-12-19

CSA C22.2 No. 60950-1-07, 2nd Edition, 2011-12

DCC1545M *1

DCC1645C *1
EN 61000-6-
2:2005

EN 61000-6-3:2001 +
A11:2004

UL 60950-1, 2nd Edition, 2011-12-19

CSA C22.2 No. 60950-1-07, 2nd Edition, 2011-12

DC3240x *1 EN 61000-6-
2:2005

EN 61000-6-3:2007 UL 60950-1, 2nd Edition, 2011-12-19

CSA C22.2 No. 60950-1-07, 2nd Edition, 2011-12

*1 This equipment has been tested and found to comply with part 15 of the FCC Rules. These limits are designed to
provide reasonable protection against harmful interference when the equipment is operated in a commercial
environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and
used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will
be required to correct the interference at his own expense.
Modifications not expressly approved by the manufacturer could void the user's authority to operated the equipment
under FCC rules.

© 2013 Thorlabs GmbH520

DCx Cameras

6.10 Thorlabs 'End of Life' Policy (WEEE)

As required by the WEEE (Waste Electrical and Electronic Equipment Directive) of the
European Community and the corresponding national laws, Thorlabs offers all end users in the
EC the possibility to return “end of life” units without incurring disposal charges.

This offer is valid for Thorlabs electrical and electronic equipment

sold after August 13th 2005
marked correspondingly with the crossed out “wheelie bin” logo (see Figure 58)
sold to a company or institute within the EC
currently owned by a company or institute within the EC
still complete, not disassembled and not contaminated

As the WEEE directive applies to self contained operational electrical and electronic products,
this “end of life” take back service does not refer to other Thorlabs products, such as

pure OEM products, that means assemblies to be built into a unit by the user (e. g. OEM
laser driver cards)
components
mechanics and optics
left over parts of units disassembled by the user (PCB’s, housings etc.).

Waste treatment on your own responsibility

If you do not return an “end of life” unit to Thorlabs, you must hand it to a company specialized
in waste recovery. Do not dispose of the unit in a litter bin or at a public waste disposal site.

WEEE Number (Germany) : DE97581288

Ecological background

It is well known that waste treatment pollutes the environment by releasing toxic products
during decomposition. The aim of the European RoHS Directive is to reduce the content of
toxic substances in electronic products in the future.

The intent of the WEEE Directive is to enforce the recycling of WEEE. A controlled recycling of
end-of-life products will thereby avoid negative impacts on the environment.

Crossed out
"Wheelie Bin" symbol

© 2013 Thorlabs GmbH

6 Appendix

521

6.11 Warranty

Thorlabs warrants material and production of the DCx Cameras for a period of 24 months
starting with the date of shipment. During this warranty period Thorlabs will see to defaults by
repair or by exchange if these are entitled to warranty.

For warranty repairs or service the unit must be sent back to Thorlabs. The customer will carry
the shipping costs to Thorlabs, in case of warranty repairs Thorlabs will carry the shipping costs
back to the customer.

If no warranty repair is applicable the customer also has to carry the costs for back shipment.

In case of shipment from outside EU duties, taxes etc. which should arise have to be carried by
the customer.

Thorlabs warrants the hard- and software determined by Thorlabs for this unit to operate fault-
free provided that they are handled according to our requirements. However, Thorlabs does not
warrant a fault free and uninterrupted operation of the unit, of the software or firmware for
special applications nor this instruction manual to be error free. Thorlabs is not liable for
consequential damages.

Restriction of warranty

The warranty mentioned before does not cover errors and defects being the result of improper
treatment, software or interface not supplied by us, modification, misuse or operation outside
the defined ambient stated by us or unauthorized maintenance.

Further claims will not be consented to and will not be acknowledged. Thorlabs does explicitly
not warrant the usability or the economical use for certain cases of application.

Thorlabs reserves the right to change this instruction manual or the technical data of the
described unit at any time.

© 2013 Thorlabs GmbH522

DCx Cameras

6.12 Exclusion of Liability and Copyright

Thorlabs GmbH has taken every possible care in preparing this Operation Manual. We
however assume no liability for the content, completeness or quality of the information
contained therein. The content of this manual is regularly updated and adapted to reflect the
current status of the software. We furthermore do not guarantee that this product will function
without errors, even if the stated specifications are adhered to.

Under no circumstances can we guarantee that a particular objective can be achieved with the
purchase of this product.

Insofar as permitted under statutory regulations, we assume no liability for direct damage,
indirect damage or damages suffered by third parties resulting from the purchase of this
product. In no event shall any liability exceed the purchase price of the product.

Please note that the content of this User Manual is neither part of any previous or existing
agreement, promise, representation or legal relationship, nor an alteration or amendment
thereof. All obligations of Thorlabs GmbH result from the respective contract of sale, which also
includes the complete and exclusively applicable warranty regulations. These contractual
warranty regulations are neither extended nor limited by the information contained in this User
Manual. Should you require further information on this product, or encounter specific problems
that are not discussed in sufficient detail in the User Manual, please contact your local Thorlabs
dealer or system installer.

All rights reserved. This manual may not be reproduced, transmitted or translated to another
language, either as a whole or in parts, without the prior written permission of Thorlabs GmbH.

Status: 2013

Copyright © Thorlabs GmbH. All rights reserved.

© 2013 Thorlabs GmbH

6 Appendix

523

Index

 A

453ActiveX programming

486Ambient conditions

AOI
for automatic image control 159
sequence mode 113

34, 97AOI (Area of interest)
AOI sequence 34
multi AOI 34

159AOI sequence

AOI sequence mode
binning 113
readout cycle 113
scaler 113
subsampling 113

Application notes
DCC1240x 63
DCC1545M 66
DCC1645C 66
DCC3240x 63
DCU223x 66
DCU224x 66

34Area of interest -> AOI

33Area scan camera

33Area scan sensor

81Auto exposure (AES)

45, 106Auto exposure shutter (AES)

93Auto exposure time (AES)

45, 106Auto frame rate (AFR)

44, 81, 95,
106

Auto gain (AGC)

45Auto gain control (AGC)

45, 81Auto white balance (AWB)
hysteresis 108

81Automatic image control
hysteresis 45
programming 147, 303

AVI functions
errors 457

84, 359AVI recording
playback 119

 B

260Bad pixel -> hot pixel

Bayer filter
Bayer conversion 26, 99, 102

34, 38, 97Binning

41, 319Bit depth

95, 421Black level

44Black level correction

501Blinking codes

71Boot boost

 C

452C#

451, 452,
453

C/C++

Camera
close 130
EEPROM 71
electrical data 487
Information 129
open 79, 130
parameters 74

148Camera EEPROM

71Camera ID

67Camera Manager
camera list 68
Control center 68

Camera parameter
save 412

71Camera parameters
load at start-up 183

Camera status
get 148

Capture
freerun synchronisation 134
live mode (freerun) 17
overlap trigger 19
single snap mode 17
trigger mode 19, 103

177Capture video

Characteristics
gamma curve 39
linear 39
logarithmic 39

477C-mount/CS-mount

102Color correction

319Color depth

99, 502Color formats

50COM port -> Serial interface

41Contrast adjustment

© 2013 Thorlabs GmbH524

DCx Cameras

71CPU idle state

24CRA correction

 D

113DCC1240x

113DCC3240x
digital input 493
digital output 494
electrical data 491
flsh 494
GPIO 492
I/O connector 491
pin assignment 491
serial interface 495
trigger 493

DCU223x / DCU224x
electrical data 487
I/O connector 487
Pin assignment 487

DCx
driver compatibility 58

14DCx camera model
DCC3240x 14
DCU223x / DCC224x 14

14, 458DCx camera models
comparison table 459

460DCx Model Naming
Conventions

460DCx naming convention

452Delphi

21DIB

Digital input
trigger 47

20, 47, 103Digital input/output
GPIO 104
programming 327, 431

Digital output
flash 47

21, 198, 322Direct3D

71DirectShow

56, 198DirectX

Display
bitmap mode (DIB) 21
color formats 502
DIB mode 133
Direct3D 21, 56, 133
DirectDraw 379
modes (uc480 Viewer) 99
OpenGL 21

overlay 133
overlay display 198

133Display overlay

70Driver version

 E

110Edge enhancement

71, 496EEPROM of the camera

Errors
error messages 454
transfer failed 79, 89, 90
transmission errors 44
troubleshooting 499

141Event handling

76, 77Expert mode

44, 93, 427Exposure time
setting 216

 F

63Fast line scan

24Fill factor

480Filter glasses
clean 480
DL filter 480
IR cut filter 480

46Firmware

477Flange back distance
calculate 477

19, 30, 280,
431

Flash

global flash 104

Flash timing
in freerun mode 49
in trigger mode 47

44, 93, 329Frame rate

17Freerun -> Capture: live
mode

177Freerun mode

 G

95, 333Gain
linearity 44

95Gamma

39Gamma characteristic

30, 115Global shutter

104, 280GPIO
programming 441

21, 56Graphics card

© 2013 Thorlabs GmbH

6 Appendix

525

 H

41, 86Histogram

28, 110, 260Hot pixel correction

Hotpixel
add 123
edit 123

 I

111I2C bus

19Image capture -> Capture

21Image display -> Display

Image format
set 267

Image memory
allocate 130

97Image scaling

504INI file -> Parameter file

58, 61Installation

Interface
serial 495

509IP norm

480IR cut filter

156is_AddToSequence

157is_AllocImageMem

159is_AOI

167is_AutoParameter

170is_Blacklevel

172is_CameraStatus

174is_CaptureStatus

177is_CaptureVideo

179is_ClearSequence

180is_ColorTemperature

183is_Configuration

188is_Convert

382is_ConvertImage

190is_CopyImageMem

191is_CopyImageMemLines

192is_DeviceFeature

196is_DeviceInfo

198is_DirectRenderer

383is_DisableDDOverlay

205is_DisableEvent

206is_EdgeEnhancement

208is_EnableAutoExit

384is_EnableDDOverlay

209is_EnableEvent

211is_EnableMessage

213is_ExitCamera

214is_ExitEvent

215is_ExitImageQueue

216is_Exposure

221is_ForceTrigger

222is_FreeImageMem

223is_FreezeVideo

225is_GetActiveImageMem

226is_GetActSeqBuf

227is_GetAutoInfo

230is_GetBusSpeed

231is_getCameraInfo

233is_GetCameraList

235is_GetCameraLUT

385is_GetCameraType

386is_GetCaptureErrorInfo

236is_GetColorConverter

237is_GetColorDepth

388is_GetDC

389is_GetDDOvlSurface

238is_GetDLLVersion

239is_GetError

390is_GetExposureRange

240is_GetFramesPerSecond

241is_GetFrameTimeRange

391is_GetGlobalFlashDelays

242is_GetImageHistogram

247is_GetImageMem

248is_GetImageMemPitch

249is_GetNumberOfCameras

250is_GetOsVersion

392is_GetPixelClockRange

251is_GetSensorInfo

252is_GetSensorScalerInfo

253is_GetSupportedTestImages

255is_GetTestImageValueRang
e

256is_GetTimeout

257is_GetUsedBandwidth

258is_GetVsyncCount

259is_HasVideoStarted

393is_HideDDOverlay

260is_HotPixel

264is_ImageFile

267is_ImageFormat

273is_InitCamera

© 2013 Thorlabs GmbH526

DCx Cameras

276is_InitEvent

278is_InitImageQueue

279is_InquireImageMem

280is_IO

288is_IsVideoFinish

394is_LoadBadPixelCorrectionT
able

395is_LoadImage

396is_LoadImageMem

398is_LoadParameters

400is_LockDDMem

401is_LockDDOverlayMem

289is_LockSeqBuf

290is_Measure

292is_ParameterSet

294is_PixelClock

402is_PrepareStealVideo

296is_ReadEEPROM

403is_ReleaseDC

297is_RenderBitmap

404is_ResetCaptureErrorInfo

299is_ResetToDefault

405is_SaveBadPixelCorrectionT
able

406is_SaveImage

407is_SaveImageEx

409is_SaveImageMem

410is_SaveImageMemEx

412is_SaveParameters

209IS_SET_EVENT_TRANSFE
R_FAILED

301is_SetAllocatedImageMem

414is_SetAOI

303is_SetAutoParameter

417is_SetBadPixelCorrection

418is_SetBadPixelCorrectionTa
ble

420is_SetBayerConversion

310is_SetBinning

421is_SetBlCompensation

313is_SetCameraID

315is_SetColorConverter

317is_SetColorCorrection

319is_SetColorMode

423is_SetConvertParam

425is_SetDDUpdateTime

322is_SetDisplayMode

325is_SetDisplayPos

426is_SetEdgeEnhancement

326is_SetErrorReport

427is_SetExposureTime

327is_SetExternalTrigger

429is_SetFlashDelay

431is_SetFlashStrobe

329is_SetFrameRate

331is_SetGainBoost

332is_SetGamma

333is_SetHardwareGain

335is_SetHWGainFactor

433is_SetHwnd

434is_SetImageAOI

337is_SetImageMem

435is_SetImagePos

438is_SetImageSize

440is_SetIO

441is_SetIOMask

442is_SetKeyColor

443is_SetLED

338is_SetOptimalCameraTiming

444is_SetPixelClock

340is_SetRopEffect

342is_SetSaturation

343is_SetSensorScaler

345is_SetSensorTestImage

347is_SetSubSampling

350is_SetTimeout

351is_SetTriggerCounter

352is_SetTriggerDelay

446is_ShowDDOverlay

447is_StealVideo

353is_StopLiveVideo

448is_UnlockDDMem

449is_UnlockDDOverlayMem

354is_UnlockSeqBuf

450is_UpdateDisplay

355is_WaitEvent

356is_WaitForNextImage

358is_WriteEEPROM

359isavi_AddFrame

360isavi_CloseAVI

360isavi_DisableEvent

361isavi_EnableEvent

362isavi_ExitAVI

363isavi_ExitEvent

© 2013 Thorlabs GmbH

6 Appendix

527

364isavi_GetAVIFileName

365isavi_GetAVIFileNameW

366isavi_GetAVISize

367isavi_GetnCompressedFram
es

368isavi_GetnLostFrames

369isavi_InitAVI

370isavi_InitEvent

371isavi_OpenAVI

372isavi_OpenAVIW

373isavi_ResetFrameCounters

374isavi_SetFrameRate

375isavi_SetImageQuality

376isavi_SetImageSize

377isavi_StartAVI

378isavi_StopAVI

 L

280LED

LED -> Status LED
DCx Status LED 501

Lens
immersion depth 478

Line scan
fast line scan 63

33, 115, 192Line scan mode

56, 61Linux
not supported functions 457

177Live mode

192Log mode

39, 40Lookup table (LUT)

 M

379Memory board

502Memory formats

24Micro lenses

34, 159Multi AOI
uc480 Viewer 112

Multi camera systems
system requirements 56

 N

56Network card

 O

379Obsolete functions

21, 322OpenGL

56Operating system

19Overlap trigger -> Capture

21Overlay -> Display

Overlay: Direct3D
display (programming) 133

198Overlay: display

 P

Parameter
new 46

80, 504Parameter file (ini file)

44, 93, 444Pixel clock

40Pixel pre-processing

71Port

50Ports

Processor
idle states 183
support for multitasking 183

76, 117Profiles

451, 452,
453

Programming languages

451Programming notes

280PWM

 Q

Quick start
connection 54
image capture 54
programming 127

 R

26Raw Bayer -> Bayer filter

Reference AOI
for automatic image control 159

454Return values

44RGB gain

34, 159ROI -> AOI

30, 115Rolling shutter

30Rolling shutter (global start)

50RS-232 -> Serial interface

 S

97Scaler

Sensor
position accuracy 480

23Sensor formats

© 2013 Thorlabs GmbH528

DCx Cameras

Serial interface
DCC3240x 50

159Setting the area of interest
-> AOI

486Shock resistance

Shutter
global 30
rolling 30

20Standby mode of the camera

76Start dialog

46, 273Starter firmware

58Status LED
DCx camera 501

431Strobe output -> Flash

34, 37, 97Subsampling

499support

Support file
create 71

56System requirements

 T

486Temperature range

110Test image

453Thread programming

280Trigger

19Trigger mode -> Image
capture

 U

495UART

67uc480 Camera Manager
Control Center 68

123uc480 Hotpixel Editor

67uc480 programs

75uc480 Viewer
status bar 79
toolbars 77

451, 452,
453

uc480.h

451, 452,
453

uc480_Api.dll

USB
bandwidth 53
cable 52
connection 52
hub 61
standard 51
topology 51

USB 3.0
cable 52
conncetion 52

 V

452VB .NET

486Vibration resistance

 W

56Windows
install camera driver 58

	1 General Information
	1.1 Safety
	1.2 Ordering Codes and Accessories
	1.3 Requirements
	1.4 DCx Camera Family
	1.5 Contents
	1.6 What's New in this Version?

	2 Camera Basics
	2.1 Operating Modes
	2.1.1 Freerun Mode
	2.1.2 Trigger Mode
	2.1.3 Standby

	2.2 Image Display Modes
	2.3 Sensor
	2.3.1 Sensor Sizes
	2.3.2 Micro Lenses
	2.3.3 Color Filter (Bayer filter)
	2.3.4 Hot Pixels
	2.3.5 Shutter Methods
	2.3.6 Line Scan Mode

	2.4 Reading Out Partial Images
	2.4.1 Area of Interest (AOI)
	2.4.2 Subsampling
	2.4.3 Binning

	2.5 Digitizing Images
	2.5.1 Characteristics and LUT
	2.5.2 Bit Depth and Digital Contrast Adjustment

	2.6 Camera Parameters
	2.6.1 Pixel Clock, Frame Rate, Exposure Time
	2.6.2 Gain and Offset
	2.6.3 Automatic Image Control
	2.6.4 Applying New Parameters

	2.7 Firmware and Camera Start
	2.8 Digital Inputs / Outputs
	2.8.1 Using Digital Inputs/Outputs
	2.8.2 Flash Timing (Trigger Mode)
	2.8.3 Flash Timing (Freerun Mode)
	2.8.4 Serial Interface RS-232 (DC3240x only)

	2.9 USB Interface
	2.9.1 History and Development
	2.9.2 Structure and Topology
	2.9.3 USB 2.0 Cabling and Connectors
	2.9.4 USB 3.0 Cabling and Connectors
	2.9.5 Data Transmission and Bandwidth

	3 Operation
	3.1 uc480 Quick Start
	3.2 Installation and Connection
	3.2.1 System Requirements
	3.2.2 DCx Driver Compatibility
	3.2.3 Installing the uc480 Software under Windows
	3.2.4 Installing the uc480 Software under Linux
	3.2.5 Connecting a DCx Camera

	3.3 Application Notes by Camera Model
	3.3.1 DCC1240x / DCC3240x Application Notes
	3.3.2 DCC1545M Application Notes
	3.3.3 DCC1645C Application Notes
	3.3.4 DCU223x Application Notes
	3.3.5 DCU224x Application Notes

	3.4 Installed uc480 Programs
	3.4.1 uc480 Camera Manager
	3.4.1.1 Camera List
	3.4.1.2 Control Center
	3.4.1.3 General Information
	3.4.1.4 Camera Information
	3.4.1.5 Creating a Support File
	3.4.1.6 Additional Functions
	3.4.1.7 Parameters

	3.4.2 uc480 Viewer
	3.4.2.1 Start Dialog
	3.4.2.2 Toolbars
	3.4.2.3 Status Bar
	3.4.2.4 Opening a Camera
	3.4.2.5 Menus
	3.4.2.5.1 File
	3.4.2.5.2 Edit
	3.4.2.5.3 View
	3.4.2.5.4 uc480
	3.4.2.5.5 Draw/Measure
	3.4.2.5.6 Profiles
	3.4.2.5.7 Help

	3.4.2.6 Dialog Boxes
	3.4.2.6.1 Recording a Video Sequence
	3.4.2.6.2 Customize
	3.4.2.6.3 Histogram
	3.4.2.6.4 Horizontal / Vertical Line View
	3.4.2.6.5 Zoom
	3.4.2.6.6 Pixel Peek
	3.4.2.6.7 Waterfall
	3.4.2.6.8 Log
	3.4.2.6.9 Image Infos

	3.4.2.7 Properties
	3.4.2.7.1 Camera
	3.4.2.7.2 Image
	3.4.2.7.3 Size
	3.4.2.7.4 Format
	3.4.2.7.5 Color
	3.4.2.7.6 Trigger
	3.4.2.7.7 Input / Output
	3.4.2.7.8 AES/AGC (Automatic Brightness Control)
	3.4.2.7.9 AWB (Automatic White Balance)
	3.4.2.7.10 Miscellaneous
	3.4.2.7.11 Multi AOI
	3.4.2.7.12 Sequence AOI
	3.4.2.7.13 Shutter

	3.4.2.8 Creating profiles

	3.4.3 uc480 Player
	3.4.3.1 Loading an AVI file
	3.4.3.2 Overview of the Operation Controls
	3.4.3.3 Loop Mode
	3.4.3.4 Video Window and Full Screen Mode

	3.4.4 uc480 Hotpixel Editor

	4 Programming (SDK)
	4.1 First Steps to uc480 Programming
	4.2 How to Proceed
	4.2.1 Preparing Image Capture
	4.2.1.1 Querying Information
	4.2.1.2 Opening and Closing the Camera
	4.2.1.3 Allocating Image Memory
	4.2.1.4 Image Memory Sequences

	4.2.2 Selecting the Display Mode
	4.2.3 Capturing Images
	4.2.3.1 Image Capture Modes
	4.2.3.2 Event / Message Handling

	4.2.4 Setting Camera Parameters
	4.2.4.1 Setting and Getting Parameters
	4.2.4.2 Automatic Image Control
	4.2.4.3 Image Pre-processing
	4.2.4.4 Get Camera Status
	4.2.4.5 Using the Camera EEPROM

	4.2.5 Saving Images and Videos
	4.2.5.1 Saving and Loading Single Frames
	4.2.5.2 Capturing AVIs

	4.2.6 Using Inputs and Outputs
	4.2.6.1 Input/Output Control

	4.3 Function Descriptions
	4.3.1 is_AddToSequence
	4.3.2 is_AllocImageMem
	4.3.3 is_AOI
	4.3.4 is_AutoParameter
	4.3.5 is_Blacklevel
	4.3.6 is_CameraStatus
	4.3.7 is_CaptureStatus
	4.3.8 is_CaptureVideo
	4.3.9 is_ClearSequence
	4.3.10 is_ColorTemperature
	4.3.11 is_Configuration
	4.3.12 is_Convert
	4.3.13 is_CopyImageMem
	4.3.14 is_CopyImageMemLines
	4.3.15 is_DeviceFeature
	4.3.16 is_DeviceInfo
	4.3.17 is_DirectRenderer
	4.3.18 is_DisableEvent
	4.3.19 is_EdgeEnhancement
	4.3.20 is_EnableAutoExit
	4.3.21 is_EnableEvent
	4.3.22 is_EnableMessage
	4.3.23 is_ExitCamera
	4.3.24 is_ExitEvent
	4.3.25 is_ExitImageQueue
	4.3.26 is_Exposure
	4.3.27 is_ForceTrigger
	4.3.28 is_FreeImageMem
	4.3.29 is_FreezeVideo
	4.3.30 is_GetActiveImageMem
	4.3.31 is_GetActSeqBuf
	4.3.32 is_GetAutoInfo
	4.3.33 is_GetBusSpeed
	4.3.34 is_GetCameraInfo
	4.3.35 is_GetCameraList
	4.3.36 is_GetCameraLUT
	4.3.37 is_GetColorConverter
	4.3.38 is_GetColorDepth
	4.3.39 is_GetDLLVersion
	4.3.40 is_GetError
	4.3.41 is_GetFramesPerSecond
	4.3.42 is_GetFrameTimeRange
	4.3.43 is_GetImageHistogram
	4.3.44 is_GetImageInfo
	4.3.45 is_GetImageMem
	4.3.46 is_GetImageMemPitch
	4.3.47 is_GetNumberOfCameras
	4.3.48 is_GetOsVersion
	4.3.49 is_GetSensorInfo
	4.3.50 is_GetSensorScalerInfo
	4.3.51 is_GetSupportedTestImages
	4.3.52 is_GetTestImageValueRange
	4.3.53 is_GetTimeout
	4.3.54 is_GetUsedBandwidth
	4.3.55 is_GetVsyncCount
	4.3.56 is_HasVideoStarted
	4.3.57 is_HotPixel
	4.3.58 is_ImageFile
	4.3.59 is_ImageFormat
	4.3.60 is_InitCamera
	4.3.61 is_InitEvent
	4.3.62 is_InitImageQueue
	4.3.63 is_InquireImageMem
	4.3.64 is_IO
	4.3.65 is_IsVideoFinish
	4.3.66 is_LockSeqBuf
	4.3.67 is_Measure
	4.3.68 is_ParameterSet
	4.3.69 is_PixelClock
	4.3.70 is_ReadEEPROM
	4.3.71 is_RenderBitmap
	4.3.72 is_ResetToDefault
	4.3.73 is_SetAllocatedImageMem
	4.3.74 is_SetAutoParameter
	4.3.75 is_SetBinning
	4.3.76 is_SetCameraID
	4.3.77 is_SetColorConverter
	4.3.78 is_SetColorCorrection
	4.3.79 is_SetColorMode
	4.3.80 is_SetDisplayMode
	4.3.81 is_SetDisplayPos
	4.3.82 is_SetErrorReport
	4.3.83 is_SetExternalTrigger
	4.3.84 is_SetFrameRate
	4.3.85 is_SetGainBoost
	4.3.86 is_SetGamma
	4.3.87 is_SetHardwareGain
	4.3.88 is_SetHWGainFactor
	4.3.89 is_SetImageMem
	4.3.90 is_SetOptimalCameraTiming
	4.3.91 is_SetRopEffect
	4.3.92 is_SetSaturation
	4.3.93 is_SetSensorScaler
	4.3.94 is_SetSensorTestImage
	4.3.95 is_SetSubSampling
	4.3.96 is_SetTimeout
	4.3.97 is_SetTriggerCounter
	4.3.98 is_SetTriggerDelay
	4.3.99 is_StopLiveVideo
	4.3.100 is_UnlockSeqBuf
	4.3.101 is_WaitEvent
	4.3.102 is_WaitForNextImage
	4.3.103 is_WriteEEPROM

	4.4 AVI Function Descriptions
	4.4.1 isavi_AddFrame
	4.4.2 isavi_CloseAVI
	4.4.3 isavi_DisableEvent
	4.4.4 isavi_EnableEvent
	4.4.5 isavi_ExitAVI
	4.4.6 isavi_ExitEvent
	4.4.7 isavi_GetAVIFileName
	4.4.8 isavi_GetAVIFileNameW
	4.4.9 isavi_GetAVISize
	4.4.10 isavi_GetnCompressedFrames
	4.4.11 isavi_GetnLostFrames
	4.4.12 isavi_InitAVI
	4.4.13 isavi_InitEvent
	4.4.14 isavi_OpenAVI
	4.4.15 isavi_OpenAVIW
	4.4.16 isavi_ResetFrameCounters
	4.4.17 isavi_SetFrameRate
	4.4.18 isavi_SetImageQuality
	4.4.19 isavi_SetImageSize
	4.4.20 isavi_StartAVI
	4.4.21 isavi_StopAVI

	4.5 Obsolete Functions
	4.5.1 is_ConvertImage
	4.5.2 is_DisableDDOverlay
	4.5.3 is_EnableDDOverlay
	4.5.4 is_GetCameraType
	4.5.5 is_GetCaptureErrorInfo
	4.5.6 is_GetDC
	4.5.7 is_GetDDOvlSurface
	4.5.8 is_GetExposureRange
	4.5.9 is_GetGlobalFlashDelays
	4.5.10 is_GetPixelClockRange
	4.5.11 is_HideDDOverlay
	4.5.12 is_LoadBadPixelCorrectionTable
	4.5.13 is_LoadImage
	4.5.14 is_LoadImageMem
	4.5.15 is_LoadParameters
	4.5.16 is_LockDDMem
	4.5.17 is_LockDDOverlayMem
	4.5.18 is_PrepareStealVideo
	4.5.19 is_ReleaseDC
	4.5.20 is_ResetCaptureErrorInfo
	4.5.21 is_SaveBadPixelCorrectionTable
	4.5.22 is_SaveImage
	4.5.23 is_SaveImageEx
	4.5.24 is_SaveImageMem
	4.5.25 is_SaveImageMemEx
	4.5.26 is_SaveParameters
	4.5.27 is_SetAOI
	4.5.28 is_SetBadPixelCorrection
	4.5.29 is_SetBadPixelCorrectionTable
	4.5.30 is_SetBayerConversion
	4.5.31 is_SetBlCompensation
	4.5.32 is_SetConvertParam
	4.5.33 is_SetDDUpdateTime
	4.5.34 is_SetEdgeEnhancement
	4.5.35 is_SetExposureTime
	4.5.36 is_SetFlashDelay
	4.5.37 is_SetFlashStrobe
	4.5.38 is_SetHwnd
	4.5.39 is_SetImageAOI
	4.5.40 is_SetImagePos
	4.5.41 is_SetImageSize
	4.5.42 is_SetIO
	4.5.43 is_SetIOMask
	4.5.44 is_SetKeyColor
	4.5.45 is_SetLED
	4.5.46 is_SetPixelClock
	4.5.47 is_ShowDDOverlay
	4.5.48 is_StealVideo
	4.5.49 is_UnlockDDMem
	4.5.50 is_UnlockDDOverlayMem
	4.5.51 is_UpdateDisplay

	4.6 Programming Notes
	4.6.1 Programming in C/C++
	4.6.2 Programming in C#
	4.6.3 Programming in VB.NET
	4.6.4 Programming in Delphi
	4.6.5 Programming with ActiveX
	4.6.6 Thread Programming

	4.7 Lists
	4.7.1 Complete List of All Return Values
	4.7.2 Error Codes of AVI Functions
	4.7.3 Linux: Not Supported Functions

	5 Specifications
	5.1 Model Comparison
	5.2 Model Naming Conventions
	5.3 Camera and Sensor Data
	5.3.1 DCC1240x / DCC3240x
	5.3.2 DCC1545M
	5.3.3 DCC1645C
	5.3.4 DCU223x
	5.3.5 DCU224x

	5.4 Mechanical Specifications
	5.4.1 DCU223x, DCU224x
	5.4.2 DCC1240x
	5.4.3 DCC3240x
	5.4.4 DCC1545M, DCC1645C
	5.4.5 Flange Back Distance
	5.4.5.1 Calculating the Flange Back Distance
	5.4.5.2 Maximum Immersion Depth for Lenses

	5.4.6 Position Accuracy of the Sensor
	5.4.7 Filter Glasses
	5.4.7.1 Filter Types
	5.4.7.2 Mounting the Filter
	5.4.7.3 Cleaning the Filter Glasses

	5.4.8 Ambient Conditions

	5.5 Camera Interface
	5.5.1 DCU223x, DCU224x, DCC1240x
	5.5.1.1 I/O Connector - Pin Assignment
	5.5.1.2 Digital Input (Trigger) Circuit
	5.5.1.3 Digital Output (Flash) Circuit

	5.5.2 DCC3240x
	5.5.2.1 I/O Connector Pin Assignment
	5.5.2.2 GPIO Interface
	5.5.2.3 Digital Input (Trigger) Circuit
	5.5.2.4 Digital Output (Flash) Circuit
	5.5.2.5 RS-232 Serial Interface

	5.5.3 Camera EEPROM Specification

	5.6 Accessories for DCx cameras
	5.6.1 Accessories for DCU22xX / DCC1240X
	5.6.2 Accessories for DCC1x45X
	5.6.3 Accessories for DCC3240x

	6 Appendix
	6.1 Troubleshooting/FAQ
	6.1.1 PCs with Energy Saving CPU Technology

	6.2 Status LED on USB DCx Cameras
	6.3 Color and Memory Formats
	6.4 uc480 Parameter File (ini file)
	6.5 Definition of IP Protection Classes
	6.6 History of uc480 Software Versions
	6.7 History of uc480 API Functions
	6.8 Thorlabs Worldwide Contacts
	6.9 Certifications and Compliances
	6.10 Thorlabs 'End of Life' Policy (WEEE)
	6.11 Warranty
	6.12 Exclusion of Liability and Copyright

